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Mean-squared displacement of a molecule moving in a glassy system
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The mean-squared displacement~MSD! of a hard sphere and of a dumbbell molecule consisting of two fus
hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory fo
liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of
MSD, is the negative of a completely monotone function for times within the structural-relaxation regime.
MSD is found to exhibit a large time interval for structural relaxation prior to the onset of thea process, which
cannot be described by the asymptotic formulas for the mode-coupling-theory–bifurcation dynamics. Ta
process for molecules with a large elongation is shown to exhibit an anomalously wide crossover in
between the end of the von Schweidler decay and the beginning of normal diffusion. The diffusivity o
molecule is predicted to vary nonmonotonically as a function of its elongation.
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I. INTRODUCTION

The mean-squared displacementdr 2(t) ~MSD! is a very
transparent concept for the discussion of liquid dynamics@1#.
For long timest, dr 2(t) increases proportional tot and to the
diffusion constant of the fluid. In an ideal solid, on the oth
hand, the long-time limit ofdr 2(t) is a finite number char-
acterizing the square of the particle’s localization leng
Therefore, the long-time behavior ofdr 2(t) depends sensi
tively on control parameters such as density or temperatu
the system is close to a liquid-glass transition point. T
MSD is thus particularly well suited to study glass-transiti
precursors. It can be measured by incoherent inelas
neutron-scattering experiments. However,dr 2(t) has to be
extracted as a small-wave-number limit of the intermedi
scattering function@1#, and this makes it very difficult to
produce accurate data for large time intervals. Dynam
light-scattering spectroscopy and sample-preparation t
niques for colloidal suspensions have improved greatly
recent years. It was demonstrated that very informative d
for the MSD of hard-sphere colloids near the glass transi
can be obtained@2#, and promising results for this syste
have also been measured by direct-imaging techniques@3,4#.
Molecular-dynamics simulations are well suited to get ac
rate data for the MSD for liquids near the glass transiti
This was demonstrated for a binary Lennard-Jones mix
@5#, for a liquid of diatomic molecules@6#, for models for the
van-der-Waals liquid orthoterphenyl@7,8#, for a model for
water @9#, for a hard-sphere-colloid model@10#, and for a
model of silica@11#. In this paper, general features and so
quantitative results for the evolution of the glassy dynam
as exhibited by the MSD will be considered within th
mode-coupling theory~MCT! for ideal liquid-glass transi-
tions.

The basic version of MCT is built on approximately d
rived closed equations of motion for the autocorrelat
functions of density fluctuations. The essential input inf
mation is the equilibrium structure factors, which are anti
pated to vary smoothly with the system’s control paramet
At certain critical values for the latter, bifurcations occ
from solutions for an ergodic liquid to ones for an amo
001/64~1!/011503~14!/$20.00 64 0115
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phous nonergodic solid. Thus, MCT deals with a model
ideal liquid-glass transitions. The transition implies a nov
dynamical scenario. Its features have been worked out
asymptotic solution of the equations. The leading-ord
asymptotic formulas establish universal results for the M
transition, such as scaling laws, power-law divergencies
the time scales, and anomalous exponents for the spe
@12,13#. Many tests of the relevance of the MCT results f
the explanation of the dynamics of glass-forming liqui
have been performed, which are reviewed to some exten
Ref. @14#. Let us only mention here the recent analysis
data measured for propylene carbonate@15#, studies by
means of the optical Kerr effect@16,17#, and the analysis of
simulation data for a binary Lennard-Jones liquid@18# and
for silica @19#. The outcome of these tests qualifies MCT a
candidate for a theory of glassy dynamics, and it seems
tified to continue the preceding studies by exploring some
the implications for the MSD.

The intention of this paper is to identify further MC
results for future tests of this theory. The previous work
the hard-sphere system~HSS! @20–24# shall be continued by
analyzing in detail the MSD for a tagged particle. The wo
on the MCT for molecular systems@25# will be extended by
evaluating the MSD for the interaction sites of a symmet
dumbbell consisting of two fused hard spheres as well as
the molecule’s center. The paper is structured as follows
Sec. II, the equations to be solved are listed and the conc
to be used to discuss the results are described. Sectio
presents the results for the MSD and the analysis of its pr
erties. In Sec. IV, the findings are summarized.

II. BASIC FORMULAS

A. Description of the system

In this section, the systems to be studied and the functi
to be used for a description of their dynamics shall be
fined. A system ofN atoms of massm distributed with den-
sity r is considered as solvent. The points in configurat
space are specified by the particle positionsrWk , k
51,2, . . . ,N. The basic variables for the description of th
©2001 The American Physical Society03-1
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structure are the density fluctuations with wave vectorqW ,
rqW5(k exp(iqW•rWk). If ^•••& denotes canonical averaging fo
temperatureT, the structure factor isSq5^urqW u2&/N, where
q5uqW u is the wave number. As the simplest example fo
solute, a tagged atom of massmS and positionrWS shall be
considered. The distribution of the atom is described by
density fluctuationrqW

S
5exp(iqW•rWS). The solute-solvent inter

action shall be characterized by the direct correlation fu
tion cq

S5^rqW
S* rqW&/(rSq). As a more complicated solute,

symmetric rigid diatomic molecule shall be chosen. Its po
tion is specified by two interaction sites (rWA ,rWB), which have
the same massmA . The position of the molecule can also b
described by its centerrWC5(rWA1rWB)/2 and the unit vector
eW5(rWA2rWB)/L, whereL5 urWA2rWBu. The configuration vari-
ables for the molecule can be built with the two dens
fluctuationsrqW

a
5exp(iqW•rWa); a5A, B. Equivalently, one can

use the number fluctuationsrqW
N

5(rqW
A
1rqW

B)/A2 and the

‘‘charge’’ fluctuationsrqW
Z
5(rqW

A
2rqW

B)/A2. The solute-solven
interaction can be characterized by the direct interaction-s
solvent correlationscq

A5cq
B5^rqW

A* rqW&/@rSqwq
N# @26#. Here

wq
N,Z516sin(qL)/qL denote the intramolecular structu

factors.
Three kinds of mean-squared displacement functions

time t shall be discussed,dr x
2(t)5^@rWx(t)2rWx(0)#2&. Here

and in the following, the labelx5S, C, andA refers to the
position of a tagged particle, of the center of the molecu
and of the atomic center in the molecule, respectively. It w
be more convenient to use the following abbreviation:

Dx~ t !5 1
6 dr x

2~ t !, x5S,C,A. ~1!

The MSD of the molecule’s constituents can be decompo
into one contribution due to translation of the center and
due to reorientation of the axis@25#,

DA~ t !5DC~ t !1 1
12 L2 @12C1~ t !#, ~2!

where

C1~ t !5^eW~ t !•eW & ~3!

is the dipole correlator. The time derivatives of the MS
provide the velocity-autocorrelation function@1#. Let us con-
sider the one for the velocityvW S(t) of the tagged particle
only, KS(t)5^vW S(t)•vW S&, where

] t
2DS~ t !5 1

3 KS~ t !. ~4!

The nontrivial time dependence ofrWx(t)2rWx(0) comes
about since the forces on the solute fluctuate in time, and
is caused by the density fluctuations of the solvent and by
fluctuations of the probability density of the solute consti
ents. These quantities are described by the density corre
fq(t)5^rqW(t)* rqW&/^urqW u2& of the solvent, by the tagged
particle-density correlatorfq

S(t)5^rqW
S(t)* rqW

S
&, and by the
01150
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molecule’s correlators fq
N,Z(t)5^rqW

N,Z(t)* rqW
N,Z

&/wq
N,Z .

These correlators also determine the desired functions, s
@1,25#

fq
S~ t !512q2 DS~ t !1O~q4!, ~5a!

fq
N~ t !512q2 DC~ t !1O~q4!, ~5b!

fq
Z~ t !5C1~ t !1O~q2!. ~5c!

B. MCT approximations

In this section, those equations shall be listed that hav
be solved numerically. Within the Zwanzig-Mori theory, a
exact equation of motion can be formulated for the dens
correlator: ] t

2fq(t)1Vq
2 fq(t)1*0

t dt8 Mq(t2t8) ] t8fq(t8)
50. HereVq

25v2q2/Sq with v denoting the thermal veloc
ity specifies a characteristic frequencyVq , and Mq(t) de-
notes a fluctuating-force correlator called the relaxation k
nel @1#. Within MCT, the kernel is split into a regular pa
Mq

reg(t) dealing with normal-liquid effects and a mode
coupling kernelVq

2mq(t) describing the cage effect. If on
introduces an operatorR for the regular dynamics by
Rfq(t)5@] t

2fq(t)1*0
t dt8 Mq

reg(t2t8) ] t8fq(t8)#/Vq
2 , one

can write

Rfq~ t !1fq~ t !1E
0

t

dt8 mq~ t2t8! ] t8fq~ t8!50. ~6!

The crucial step in the derivation is the application of K
wasaki’s factorization approximations to express the ker
mq(t) as the mode-coupling functionalFq of the correlators,

mq~ t !5Fq@fk~ t !#, ~7a!

Fq@ f̃ k#5
1

2~2p!3E dkW V~qW ;kW ,pW ! f̃ k f̃ p . ~7b!

Here pW is short for qW 2kW . The coefficientsV(qW ;kW ,pW ) are
given in terms of the structure factor@27#.

None of the MCT results for structural relaxations, in pa
ticular none of the universal results to be cited in Sec. II
depend on the model forMq

reg(t). The details of the kerne
merely influence the value of some time scale to be deno
below ast0. But the kernelMq

reg(t) shall be specified in orde
to have controllable quantitative results for all times. Spec
cally, a model withMq

reg(t)[0 shall be chosen. The operato
R shall be complemented by an indexH indicating that a
Hamiltonian dynamics is considered for the short-time m
tion,

R Hfq~ t !5] t
2fq~ t ! / Vq

2 . ~8a!

This model overemphasizes oscillation features. A more
alistic model would include at least some friction term as it
caused for low-frequency phenomena by binary collis
events. But no detailed proposals for the treatment of s
effects have been made so far within MCT. Some results a
will be presented for a simplified colloid model. Here, th
3-2
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inertia term from Eq.~8a! is neglected and the regular term
chosen as aq-independent white-noise kernel. It is explain
in more detail in Appendix A that this model corresponds
the conventional treatment of colloids by coarse-graining
time over intervals of the duration of collisions of the solve
molecules with the mesoscopic colloid particles. As a res
the short-time motion is treated by a Brownian dynamics

R Bfq~ t !5tq ] tfq~ t !. ~8b!

Here tq5Sq /(D0q2) with D0 denoting the single-particle
diffusion constant.

Equations~6! and~8! hold analogously for the solute co
relatorsfq

x(t), x5S, N, andZ. One gets (Vq
S)25vS

2q2 with
vS denoting the tagged particle thermal velocity. The rela
ation time for the Brownian motion istq

S51/(D0
Sq2) with

D0
S denoting the tagged particle short-time diffusivity. Th

more involved expressions for the characteristic frequen
Vq

N,Z can be found in Ref.@25#. Brownian dynamics shall no
be considered for the dumbbell molecule. The fluctuati
force kernels are functionals of the correlatorsfq

x(t) and
fq(t):

mq
x~ t !5F q

x@fk
x~ t !,fp~ t !#, ~9a!

F q
x@ f̃ k

x , f̃ p#5
1

~2p!3E dkW Vx~qW ;kW ,pW ! f̃ k
x f̃ p , x5S,N,Z.

~9b!

Again, pW is short forqW 2kW and the coefficientsVx(qW ;kW ,pW ) are
given bySq and the direct correlation functions@25,27#. It is
cumbersome to calculate the requiredq→0 limits in Eqs.~5!
numerically from numerical solutions forfq

x(t). It is more
adequate to carry out the limit analytically in the equatio
of motion forfq

x(t) so that one gets equations of motion f
the desired functions. The nontrivial parts of these equati
are convolution integrals defined with theq→0 limits of the
kernelsmq

x(t). One gets for the dipole correlator,

] t
2C1~ t !12vR

2 C1~ t !12vR
2 E

0

t

dt8 mZ~ t2t8! ] t8C1~ t8!50,

~10!

where vR is the thermal angular velocity of the molecu
@25#. From the equation forfq

S(t), one gets a Zwanzig-Mor
equation for the velocity correlator@12#,

] tKS~ t !1vS
2 E

0

t

dt8 mS~ t2t8! KS~ t8!50. ~11!

Integrating twice overt, one gets, with the aid of Eq.~4! and
the initial conditionsDS(0)50 and] tDS(0)50,

H: ] tDS~ t !2vS
2 t1vS

2 E
0

t

dt8 mS~ t2t8! DS~ t8!50.

~12a!

The corresponding equation for Brownian short-time dyna
ics @23# is derived in Appendix A:
01150
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B: DS~ t !2D0
S t1D0

S E
0

t

dt8 mS~ t2t8! DS~ t8!50.

~12b!

The same procedure leads to the equation of motion for
MSD of the center:

H: ] tDC~ t !2vT
2 t1vT

2 E
0

t

dt8 mN~ t2t8! DC~ t8!50,

~13!

where the kernel is denoted bymN(t) andvT is the thermal
velocity for the molecule’s translation@25#. The problem of
the molecule’s dynamics reduces to that of a tagged a
with mS52mA , if the limit L→0 is considered.

The kernels in the preceding Eqs.~10!–~13! are given by
mode-coupling functionals,

mx~ t !5F x@fk
x~ t !,fp~ t !#, ~14a!

F x@ f̃ k
x , f̃ p#5

1

6p2E0

`

dk k4 rSk vx~k! f̃ k
x f̃ k , x5S,N,Z.

~14b!

Here vS(k)5(ck
S)2 @27#, vN(k)52(ck

A)2wk
N , and vZ(k)

5(L2/6)(ck
A)2wk

Z @25#. A fluctuating force with vanishing
wave vector can couple to density fluctuations of the solv
for all wave vectorskW provided the atom or molecule ca
absorb the recoil with wave vector2kW . Therefore, one need
the superposition of density correlatorsfk(t) andfk

x(t) for
all wave numbersk for the calculation of the kernelsmx(t).

C. Universal results

Universal properties of the MCT–glass-transition sc
nario are formulated by the leading-order asymptotic expr
sions for the long-time dynamics for states near the transi
points. This paper focuses on features beyond the unive
ones, but the universal formulas shall be used as referenc
this section, those formulas@12# shall be compiled that are
needed in Sec. III for the description of the results.

The equilibrium structure of the system may depend
say, n control parameters, which can be combined to
control-parameter vectorV. A separation parameters(V), a
smooth function ofV, can be defined with the aid of th
mode-coupling functionalFq . For states with control param
etersV such thats,0, correlation functions decay to zero
fq(t→`)50. But for states withs.0, density fluctuations
exhibit spontaneous arrest:fq(t→`)5 f q.0. The Debye-
Waller factor f q is to be evaluated from the mode-couplin
functional Fq in Eqs. ~7! via the equation f q /(12 f q)
5Fq@ f k# @27#. The set of critical pointsVc, defined by
s(Vc)50, separates liquid states from glass states. This
sult holds for all correlatorsfA(t)5^A(t)* A&/^uAu2& of
variables A coupling to density fluctuations. WhilefA(t
→`) vanishes for the liquid, generically, the limitf A

5fA(t→`) is positive for the glass. IfA refers torqW , rqW
S ,

or eW , f A denotes the Debye-Waller factorf q , the Lamb-
3-3
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Mössbauer factorf q
S , or the Edwards-Anderson paramet

f 1, respectively, of the glass. Crossing the transition poi
the long-time limit changes discontinuously from zero to t
critical value f A

c . For the variation off A upon approaching
the transition from the glass side, one gets for smalls in
leading order

f A5 f A
c 1hA Ausu / A12l. ~15!

HerehA is called the critical amplitude for variableA. Every
point Vc is characterized by a numberl, 0,l,1, which is
called the exponent parameter. The significance ofl is ex-
plained below in connection with Eqs.~16!–~18!. It is a mat-
ter of convention not to incorporateA12l in the amplitude
hA , in order to simplify some of the following formulas. Th
quantitiesf A

c , hA , andl are calculated fromFq . They are
equilibrium quantities that are the same for Hamiltonian a
Brownian dynamics.

The parameterl determines an anomalous exponenta,
0,a, 1

2 , which is called the critical exponent. The equati
G(12a)2/G(122a)5l holds, whereG denotes the gamm
function. The long-time decay at the critical point is give
up to corrections of ordert22a, by the power law

fA~ t !5 f A
c 1hA ~ t0 /t !a, s50, t/t0@1. ~16!

The A-independent timet0 is the relevant microscopic sca
for the bifurcation dynamics. It depends on all details of t
transient dynamics as well as on the mode-coupling fu
tionals for parameters at the transition point.

The first scaling law of MCT deals with the dynamics f
smalls in a time interval whereh5fA(t)2 f A

c is small. In a
leading expansion fors→0 andh→0, one gets

fA~ t !5 f A1hA G~ t !, ~17a!

G~ t !5Ausu g6~ t/ts!, s:0, ~17b!

ts5t0 / usud, d51/2a. ~17c!

The functionsg6( t̂ ) are determined byl. Thus, the control-
parameter dependence of the dynamics is determined by
correlation scaleAusu and by the first critical time scalets .
One getsg6( t̂→0)51/ t̂ a, so that Eq.~16! is reproduced for
fixed large t if s tends to zero. Sinceg1( t̂→`)
51/A12l, also Eq.~15! is reproduced.

The equationg2( t̂→`)52Bt̂b1O(1/t̂ b) holds. The
anomalous exponentb, 0,b<1, which is called the von
Schweidler exponent, is to be calculated from the equa
G(11b)2/G(112b)5l. The constantB is of order unity.
Substituting this result into Eqs.~17!, one gets von Sch
weidler’s law for the decay of the liquid correlator below th
plateauf A

c ,

fA~ t !5 f A
c 2hA ~ t/ts8 !b, ts!t, s→20. ~18a!

The control-parameter dependence is described by the
ond critical time scale,
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Following the terminology of the glass-transition literatur
the decay offA(t) below the plateauf A

c is called thea
process. For this process, the second scaling law of MCT
leading order fors→20 holds:

fA~ t !5f̃A~ t̃ !, t̃ 5t/ts8 , ts!t. ~19!

The control-parameter-independent shape functionf̃A( t̃ ) is
to be evaluated from the mode-coupling functionals at
critical pointsVc. The differences of the dynamics as the
are caused by different models for the short-time dynam
merely enter via differences in the scalet0. For short res-
caled timest̃ , one getsf̃A( t̃ )5 f A

c 2hAt̃ b1hA8 t̃ 2b1•••, so
that Eq.~18a! is reproduced. The ranges of applicability
the first and the second scaling laws overlap; both sca
laws imply von Schweidler’s law forts!t!ts8 .

Suppose the system is driven through the transition p
Vc by smooth variation of some parametersu such as the
temperature, the density, or, for a colloid, the salt concen
tion of the solvent. Letuc denote the value whereV(uc)
5Vc. Then one can write fors, in leading order for small
(u2uc), the expressions5Cu (u2uc)/uc. The constantCu
depends on the choice ofu and connects the distance param
eter e5(u2uc)/uc with the relevant separation paramet
s.

D. The model

Hard spheres of diameterd shall be used as a model fo
the solvent atoms. For this case, all equilibrium quantities
specified by the packing fractionw5prd3/6. The MCT
model for the hard-sphere system~HSS! will be defined by
two further technical assumptions. First, the structure fac
Sq and the direct correlation functioncq are evaluated within
the Percus-Yevick theory@1#. Second, the wave numbers a
discretized to 100 equally spaced valuesqd
50.2,0.6,1.0, . . . ,39.8. The details of the transformation o
the functional in Eq.~7b! to a polynomial in the 100 vari-
ablesfq(t) can be found in Ref.@22#. Representative solu
tions are shown in Refs.@24# and @28# for the Hamiltonian
dynamics and in Ref.@22# for the Brownian dynamics. There
is a liquid-glass transition at the critical packing fractio
wc'0.516 @22,27#. For the exponent parameter, one getsl
50.735, and this implies

a50.312, b50.583, B50.836, d51.60, g52.46.
~20a!

For the separation parameters, one gets in leading order

s51.54e, e5~w2wc!/wc . ~20b!

The microscopic time scalest0 for Hamiltonian dynamics
@28# and Brownian dynamics@22#, respectively, are

t0
H50.0236~d/v !, t0

B50.002 65d2/D0 . ~21!
3-4
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As an atomic solute, a tagged particle of the solvent shal
considered, i.e.,mS5m, and cq

S is identical with the direct
correlation functioncq of the HSS. As a molecular solute,
symmetric dumbbell of two fused hard spheres of diameted
and massmA5m shall be chosen. The elongationz5L/d
shall be used as the control parameter of the solute.
wave numbers are chosen discrete as above. The direct
relation functioncq

A is expressed as series of contributio
cl (q), l 50,1, . . . , obtained by expanding the molecul
solvent correlations in spherical harmonics@25#. The sum
over l is truncated atl co58. Thecl (q) are evaluated with
the Percus-Yevick theory@29#. Representative results for th
molecule’s correlatorsfq

N(t), fq
Z(t), andC1(t) are shown in

Ref. @25#, and those forfq
S(t) for the Brownian dynamics are

in Ref. @23#.
The figures to be discussed below and the numbers t

mentioned are evaluated for the above-specified mode
follows. First, for a representative set of packing fractio
Eqs.~6! and~7! are solved for the density correlatorsfq(t),
both for Hamiltonian as well as Brownian dynamics. The
correlators are used to define the kernels in Eqs.~9!, so that,
as a second step, the tagged particle correlatorsfq

S(t) could
be evaluated, also for both examples for the short-time
namics. Furthermore, for everyw, the equations for the mol
ecule’s correlatorsfq

N,Z(t) are solved for 10 values for th
elongationz. These results are substituted into Eqs.~14! for
the kernelsmx(t) so that, as a last step, Eqs.~10!–~13! for
the desired functionsDx(t), C1(t), andKS(t) can be solved.

III. RESULTS

A. The diffusion-localization transition

If a tagged particle would experience a mere Newton
friction force, the velocity correlations would decay exp
nentially, KS(t)}exp@2(t/t)#. The cage effect in dense liq
uids manifests itself by a qualitatively different behavio
namely by oscillatory variations with a decay ofKS(t) to
negative values@1#. Figure 1~a! demonstrates this phenom
enon. With increasing density, the crossover time to nega
values shortens and the damping of the oscillations increa
A Green-Kubo formula relates the particle diffusivityDS to
the zero-frequency velocity spectrum:DS5(1/3)*0

`dt KS(t)
@1#. Negative contributions toKS(t) reduce the diffusivity
with increasingw. From Eq.~11!, one getsDS as the inverse
of the zero-frequency spectrum of the relaxation kernel@12#:
DS51/*0

`dt mS(t). From Eqs. ~12!, one obtains for the
long-time asymptote of the MSD limt→`DS(t)/t5DS @1#.

For glass states, density fluctuations arrest for long tim
fq

S(t→`)5 f q
S.0. The Lamb-Mo¨ssbauer factorf q

S is to be
evaluated from the mode-coupling functionalF q

S in Eqs.~9!
via the equationf q

S/(12 f q
S)5F q

S@ f k
S , f p# @27#. It approaches

unity for q tending to zero. A localization lengthr S can be
introduced to characterize the width of thef q

S-versus-q
curve: f q

S512(qrS)21O(q4). From Eq.~5a!, one gets for
the MSD limt→`DS(t)5r S

2 . Using Eqs.~12!, one can ex-
pressr S

2 as the inverse of the long-time limit of the relaxatio
kernel @12#: r S

251/mS(t→`)51/F S@ f k
S , f p#. If the density
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increases, the localization lengthr S decreases. As a resul
the frequency of the oscillations of the particles in their fr
zen cages increases, as is shown in Fig. 1~b!. But, in contrast
to what is found for liquid states, the damping of the osc
lations decreases upon compression. This reflects the fo
tion of anomalous oscillation peaks in the density-fluctuat
spectra, which have properties of the so-called boson pe
of liquids and glasses@24#.

The ideal liquid-glass transition implies a transition fro
a regime with particle diffusion forw,wc to one with par-
ticle localization forw>wc . The former is characterized b
DS.0 and 1/r S50 and the latter byDS50 and 1/r S.0.
The subtleties of the glass-transition dynamics occur outs
the transient regime. They can be discussed best on loga
mic scales as in Fig. 2. For very short times, sayt<t0,
interaction effects are unimportant and limt→0DS(t)/t2

5vS
2/2 reflects ballistic motion. For times larger thant0, the

cage effect leads to a suppression ofDS(t) below the short-
time asymptote. For such large times thatdr S

2(t)/d2 reaches
unity, the MSD approaches the diffusion asymptote,DS(t)
'DS t, as is shown by the dotted straight lines drawn for t
curves with labelsn51 and n59. Upon increasingw to-
wardswc , the diffusivity decreases towards zero. Figure
shows that the power lawDS

1/g} ueu for ueu ,0.1 holds.
The lowest line in Fig. 2 deals with the same glass st

w51.1wc , which was considered in Fig. 1~b! for the label
n53. For this density, there is no obvious glassy dynam
Rather,DS(t) has approached its long-time limitr S

2 after the
oscillations have disappeared fort'1. Decreasingw to-

FIG. 1. Normalized velocity-correlation functionsKS(t)/(3vS
2)

for a tagged particle of the hard-sphere system~HSS!. The dotted
lines with labelc refer to the critical packing fractionwc'0.516.
The full lines with labelsn52 and 3 are calculated for distanc
parameterse5(w2wc)/wc57102n/3 for the liquid (e,0) and for
the glass (e.0), respectively. Here and in some of the followin
figures, an arrow marks the time 20t0, where t05t0

H

50.0236(d/v) is the time scale from Eqs.~16! and ~21! for the
critical decay. The units of length and of time are chosen here
in the following figures so that the particle diameterd and the
thermal velocitiesv5vS are unity.
3-5
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wardswc , the softening of the glass manifests itself by
increase of the localization lengthr S . At the transition point
w5wc , the critical valuer S

c50.0746d is reached. This up-
per limit for r S is consistent with Lindemann’s melting cr
terion @27#. Using Eq. ~15! for f q and f q

S and substituting
these formulas intoF S@ f k

S , f p#, it follows that the glass in-
stability at wc causes aAs anomaly for the localization
length,

r S
25r S

c 22hSAs /A12l1O~s!, ~22!

where r S
c 250.005 57d2 and hS50.0116d2. Figure 3 dem-

onstrates that the leading asymptotic formula accounts
the r S

2-versus-w dependence fore<0.01. But the data forn

FIG. 2. Double logarithmic presentation ofDS(t)5dr S
2(t)/6 for

the mean-squared displacement~MSD! dr S
2(t) for a tagged particle

of the HSS. The dotted line with labelc refers to the critical packing
fraction wc and the full ones toe56102n/3. The straight dashed
line with slope 2 exhibits the ballistic asymptote (vSt)2/2. The
straight dotted lines with slope 1 exhibit the long-time asympto
DS t of the two liquid curves forn51 and 9. The horizontal line
marks the square of the localization length atw5wc : r S

c 2

50.005 57d2.

FIG. 3. The diamonds are the values forDS
1/g with the HSS

exponentg52.46 for the tagged particle diffusivitiesDS deter-
mined for the liquid curves in Fig. 2. The straight line is the fun
tion G(wc2w), w<wc , with G chosen so that the line goes throug
the data point forn59. The crosses exhibit the square of the loc
ization length,r S

2 , determined for the glass curves in Fig. 2. T
full line exhibits the leading asymptotic lawr S

c 22hSAs / A12l,
Eq. ~22!.
01150
or

<4, i.e., fore>0.05, are no longer described by theAs law.
The range of applicability for the asymptotic description
r S

2 is remarkably smaller than that for the corresponding
scription of f q for intermediate wave numbers@22#.

The glass curve fore50.01, shown in Fig. 2 with the
labeln56, exhibits a decay between the end of the transi
oscillations and the arrest atr S

2 , which is stretched over a
time interval of about two orders of magnitude. A simil
two-decade interval is needed for the liquid curve with lab
n56 to reach the critical value (r S

c)2. After crossing (r S
c)2,

two further decades of an upward bent log10DS(t)-versus-
log10t variation are exhibited before the diffusion asympto
is reached. The indicated slow and stretched time variatio
referred to as glassy dynamics.

B. The structural-relaxation regime

For times outside the transient regime, sayt>C* t0, the
density correlators can be written in the formfq(t)
5fq* (t/t0). Heret0 is the scale introduced in Eq.~16!. The
functionsfq* are determined uniquely by the mode-coupli
functionalFq , i.e., they are given by the equilibrium struc
ture. This holds for all choices of the regular kernels in E
~6!, in particular for the two models defined by Eqs.~8a! and
~8b! @25,28,30,31#. Corresponding results hold for the de
sity correlators of the tagged atom@30# and of the molecule
@25#. The solutions of the specified MCT model for colloid
are completely monotone@32#. A function F(t), defined for
t.0, is called completely monotone if all derivatives ex
and

~2]/]t !nF~ t !>0, n50,1, . . . . ~23a!

According to Bernstein’s theorem@33#, this property is
equivalent to the existence of a distributionr(g)>0 so that

F~ t !5E
0

`

e2gt r~g! dg. ~23b!

Thus, one can write for t>C* t0 , fq(t)
5*0

`e2g(t/t0) rq(g) dg with rq(g)>0, i.e., the functions
fq* deal with relaxation. Corresponding formulas hold f
the solute correlatorsfq

x(t). Representative examples fo
rq(g) are discussed in Ref.@34#.

From Eqs.~5!, one getsC1(t)5C1* (t/t0) for t>C* t0,
whereC1* is completely monotone, and also

Dx~ t !5Dx* ~ t/t0!, t>C* t0 , x5S,C,A. ~24!

Here, the functionsC1* andDx* are determined by the equ
librium structure. With Eq.~4!, one can express the velocit
correlator in terms of the structure functionF(t)
52]t

2DS* (t):

KS~ t !523 F~ t/t0! / t0
2 , t>C* t0 . ~25!

It can be shown that the functionF is completely monotone
The proof does not provide further insight and is delegated
Appendix A.
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In Ref. @28#, the curves forfq(t) have been compare
with the ones forfq* (t/t0). The interval for structural relax
ation was larger for the colloid model than for the mod
with the underlying Hamiltonian dynamics. Thus, the stru
tural relaxation interval can be identified as the one wh
the specified curves for the two models collapse. Figur
exhibits such a comparison for the MSD. Forueu <0.01, the
curves agree within the accuracy of the drawing. This ho
provided t>20t0, i.e., C* '20. The result is nearly valid
also for distance parameters as large asueu 50.1. But there is
a small offset between the full and the dashed liquid cur
for x51. This means that there is a smooth drift oft0 with
changes ofw, which is different for the hard-sphere colloi
and for the conventional HSS.

In Fig. 5, the rescaled velocity correlatort0
2 KS(t)/3 for

the critical packing fraction is shown as a full line. Th
diagram is an extension and magnification of the dotted li
from Fig. 1 for t>0.2. The dashed line is the analogo
result (t0

B)2 ] t
2DS

col(t) calculated for the colloid model. Th
latter function is (t0

BD0
S)2Fcol(t), where the completely

monotone functionFcol(t) was introduced in Appendix A in
connection with Eqs.~A8a! and~A9!. According to Eq.~25!,
the two curves should collapse on the functionF(t/t0). This
is the case fort.20t0 within small error margins. The
curves demonstrate stretched relaxation to zero, which
not be adequately represented on linear scales. It is sh
also that oscillatory motion tends to mask glassy relaxat
From now on, the discussion will focus on the structur
relaxation regimet>20t0.

C. Scaling-law descriptions

In this section, it shall be examined how well the leadin
order asymptotic results from Sec. II C can account qua
tatively for the MSD. Let us start withDS(t) for w5wc .
This result for the critical dynamics, i.e., the dotted line

FIG. 4. Double logarithmic presentation of the MSD for
tagged particle of the HSS as a function of the reduced timet/t0 for
distance parameterse56102x, x51,2,3. The full lines reproduce
the results from Fig. 2 with labelsn53,6,9 andt05t0

H from Eq.
~21!. The dashed lines are the corresponding results for the co
model specified in the text@23# with t05t0

B from Eq. ~21!. The
curves forx52 and 3 are shifted by two and four decades, resp
tively, to the right to avoid overcrowding. The full dots and squa
mark the time scalests and ts8 , respectively, defined in Eqs.~17c!
and ~18b!.
01150
l
-
e
4

s,

s

s

n-
wn
n.
-

-
i-

Fig. 2, is reproduced as a full line in the semilogarithm
presentation in Fig. 6. The transient dynamics fort<20t0
accounts for about 45% of the total increase ofDS(t) from
zero to the long-time asymptoter S

c 2 . The structural relax-
ation needed to approachr S

c 2 up to 5%, i.e., 50% of the tota
increase, is stretched over a large interval of about four
ders of magnitude time variation. The leading-order form
for the MSD at the transition point is in analogy to Eq.~16!,

DS~ t !5r S
c 22hS ~ t0 /t !a, w5wc , t@t0 . ~26!

The dashed line demonstrates that Eq.~26! describes —

id

-
s

FIG. 5. Rescaled velocity correlators2F(t)5t0
2 KS(t)/3

5t0
2 ] t

2DS(t) as a function of the rescaled timet/t0 for a tagged
particle of the HSS at the critical packing fractionw5wc . The full
line refers to the model for a Hamiltonian dynamics witht05t0

H

from Eq.~21! and the dashed one to the colloid model defined in
text with t05t0

B from Eq. ~21!. The full line is a rescaling of the
dotted curves in Fig. 1, where values fort<0.2, i.e.,t/t0,8.5, are
not reproduced.

FIG. 6. DS(t) for a tagged particle of the HSS at the transitio
point w5wc ~full line!, the leading-asymptotic expansion, Eq.~26!
~dashed line!, and the leading-plus-next-to-leading-asymptotic e
pansion DS(t)5r S

c 22hS(t0 /t)a1kS(t0 /t)2a ~dashed-dotted line!.
The diamond and circle mark the timest* 518.75792t0 and t**
51.55565.7t0, where the full line differs by 5% from the dashe
and dashed-dotted line, respectively. The horizontal line ma
the long-time asymptoter S

c 2 . The dotted line exhibits the ballistic
asymptote1

2 (vSt)2.
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S.-H. CHONG, W. GO¨ TZE, AND M. R. MAYR PHYSICAL REVIEW E 64 011503
within a 5% error margin — about 25% of the total increa
of DS(t). There remains the large part of the structur
relaxation interval between 20t0 andt* 5792t0, which is not
adequately accounted for. About half of the structur
relaxation increase ofDS(t) is outside the range of applica
bility of the leading-order asymptotic formula. Extending E
~26! by inclusion of the leading correction, one gets a d
scription of the MSD up to errors of order (t0 /t)3a: DS(t)
5(r S

c)22hS(t0 /t)a1kS(t0 /t)2a. From Ref. @23#, one de-
duces kS50.0143d2. The dashed-dotted line shows ho
inclusion of the correction term expands the range of
analytic description.

The first scaling law for the MCT-bifurcation dynamic
Eqs.~17!, implies with Eq.~5a!,

DS~ t !5r S
c 22hSAusu g6~ t/ts!, s : 0, usu !1, t@t0 .

~27!

For the liquid states withs,0, it describes how the
DS(t)-versus-t curve crosses the plateau (r S

c)2. For the glass
states withs.0, it describes the approach towards the arr
at r S

25DS(t→`). The control-parameter–independent fun

tions g6( t̂ ) for the HSS value ofl are discussed in Fig. 10
of Ref. @22#. The dashed lines in Fig. 7 exhibit Eq.~27! for
three liquid states. They agree with the MCT solutio
within a 5% error margin within the intervals marked b
diamonds. Within these intervals,DS(t) increases from abou
0.0043d2 to about 0.0086d2. Formulas such as Eqs.~16!
and~26! are the basis for the derivation of the MCT-scali
laws. Therefore, it follows from Fig. 6 that the part of th

FIG. 7. The full lines showDS(t) for packing fractionsw given
by e5(w2wc)/wc52102x, x52,3,4. The dashed lines are th
first-scaling-law descriptions by Eq.~27!. The diamonds mark the
points where the dashed lines differ from the full ones by 5
Within these intervals,DS(t) varies between about 0.0043 an
0.0086 as is indicated by the shaded bar. The crosses exhib
von Schweidler law, Eq.~28!. The filled circles and squares mar
the timests and ts8 , respectively, defined in Eqs.~17c! and ~18b!.
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structural relaxation regime between 20t0 and t* remains
outside the range of validity of Eq.~27!.

For small rescaled timest̂5t/ts , Eq. ~27! reproduces Eq.
~26! for s→0. The right-hand side of Eq.~27! becomes
independent ofs and agrees with Eq.~26!. This explains
why the dashed lines in Fig. 7 forx53 and 4 collapse for
t<10 and why the corresponding diamonds are located n
t* . For x52, the separation parameters is already so large
thatg6(t* /ts) differs remarkably from (ts /t* )a. Therefore,
DS(t) does not reach thet2a asymptote fort't* , and the
corresponding diamond shifts away fromt* . Thex53 curve
follows the critical asymptote from Eq.~26! for a time inter-
val of less than two decades. Such an interval would not
large enough for a compelling experimental confirmation
the t2a law. To identify thet2a law in its pure form for the
model under study,ueu must not exceed 1024.

For large rescaled timest̂ , the master function for the
glass approachesg1( t̂→`)51/A12l, and Eq.~27! repro-
duces Eq.~22!. According to the preceding paragraphs, th
explains the solutions for the glass provided the long-ti
limit r S

2 is located in the shaded interval of Fig. 7, and this
demonstrated in Fig. 3.

Functiong2( t̂ ) for the liquid is zero fort̂250.704. Thus,
DS( t̂2ts)5(r S

c)2 and the interval for the increase ofDS(t) to
the plateau value (r S

c)2 expands proportional tots if w in-

creases towardswc . For larget̂ , one gets von Schweidler’s
law,

DS~ t !5~r S
c!21hS ~ t/ts8 !b, s→20, ts!t!ts8 . ~28!

Therefore, the long-time end of the range of applicability
Eq. ~27! expands proportional tots8 , as is indicated by the
filled squares in Fig. 7. Formula~28! is exhibited by the
crosses. These approach the plateaur S

c 2 for t!ts and the
dashed scaling-law lines fort@ts . Sincets8 /ts→` for ueu
→0, the time interval for the von Schweidler–law descri
tion expands with decreasingueu.

Equation ~17a! formulates the factorization theorem fo
dfA(t)5fA(t)2 f A

c : in a leading-order expansion for sma
dfA , the deviationdfA(t) of the correlator from the platea
value f A

c factorizes in a control-parameter–independent a
plitude hA and a functionG(t). The functionG(t) is the
same for all variablesA and describes the time-and-contro
parameter dependence offA(t) by a scaling law, Eq.~17b!.
This theorem can be tested by identifying the time inter
and the range of distance parameterse for which the dia-
grams forf̂A(t)5dfA(t)/hA collapse withG(t). Figure 8
demonstrates such a test for the dipole correlatorsC1(t) for
three values of the elongation parameterz. The markers for
20t0 , t* , ts , andts8 have been added to facilitate a compa
son with Fig. 7. Obviously, the scenario for the plate
crossing is the same forC1(t) as discussed above forDS(t).
To corroborate this conclusion, the rescaled result for
MSD, D̂S(t)5@r S

c 22DS(t)#/hS for e520.001, has been
added to the figure. Thex52 results show that for negativ
Ĉ1(t), the full lines follow the sequencez5 0.6, 0.8, and 1.0

.

the
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from top to bottom, where the latter two curves are ve
close to each other. The same behavior is observed for p
tive Ĉ1(t). This observation exemplifies a general implic
tion of the leading corrections to the factorization theor
@22#.

A possibility for the definition of a characteristic tim
scaletA for thea process of variableA is given by the time
needed to complete 95% of the total decay from the plat
f A

c to the equilibrium value zero, i.e.,fA(tA)5 f A
c /20.

Within the range of validity of the second scaling law, E
~19!, the A-dependent scales are coupled in the sense
tA5 t̃A ts8 . Here t̃A is an A-specific control-parameter–

independent factor determined byf̃A( t̃A)5 f A
c /20. Applying

these results to the dipole correlator, one getsC1(t)
5C̃1( t̃ ) for usu!1 and ts!t, where t̃ 5t/ts8 . For the

a-scale factors, one findst̃1518.8 ~8.73,2.66! for z51.0
~0.8,0.6!. The description of thea process for elongation
parameterz50.8 is demonstrated in Fig. 8 of Ref.@35#.

Using the second scaling law for the tagged-partic
density correlator, one gets from Eq.~5a! the second scaling
law for thea process of the MSD,

DS~ t !5D̃S~ t̃ !, t̃ 5t/ts8 , usu !1, ts!t. ~29!

An a-relaxation timetS shall be defined by that time, wher
the diffusion asymptoteDS t is reached within 5%, i.e.
DS(tS)51.05DS tS . One getsDS5D̃S /ts8 and tS5 t̃S ts8 ,

where D̃S and t̃S are to be determined from
lim t̃→`D̃S( t̃ )/ t̃ 5D̃S and D̃S( t̃S)/ t̃S51.05D̃S . One finds
D̃S50.0171 andt̃S511.6. One gets in particularDS}1/ts8
}(wc2w)g, and Fig. 3 demonstrates how the diffusivity a

FIG. 8. The full lines are dipole correlatorsC1(t) rescaled to

Ĉ1(t)5@C1(t)2 f 1
c#/h1 for the elongation parametersz50.6, 0.8,

and 1.0 ~from top to bottom!, where f 1
c50.769,0.905,0.955 and

h150.46,0.19,0.09, respectively. The distance parameters
e52102x, x52,3,4 ~compare text!. The filled circles and square
mark the timests and ts8 , respectively, for the three packing frac
tions. The dashed lines exhibit the first-scaling-law asympto
Ausug2(t/ts). The dotted line is the MSD for a tagged particle f

x53 rescaled toD̂S(t)5@r S
c 22DS(t)#/hS .
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proaches this power-law asymptote forw increasing towc .
The asymptotic description ofDS(t) by Eq. ~29! is demon-
strated in Fig. 9 of Ref.@23#.

For times of orderts , the relative corrections to the firs
scaling law are of orderAusu. For times of orderts8 , the
corrections to the second scaling law are of orderusu. There-
fore, the second scaling law holds for larger separationsusu
than the first one@22#. For example, even for the large valu
e520.1, DS

1/g differs from the linear asymptote by onl
15%, as is demonstrated by then53 result in Fig. 3. The
corrections to Eq.~29! increase ift decreases towardsts .
But for t'ts , the description in terms of the first scaling la
becomes valid, which provides the leading corrections to
~29!. The descriptions in terms of the two scaling laws ov
lap. Together, they provide a complete description of
dynamics fort>t* . This holds providedueu is small enough,
as is demonstrated in Fig. 9 fore521023 for DS(t) and
DC(t) for z5 0.8, and forDA(t) for four values ofz. From

re

s

FIG. 9. DS(t) andDC(t) for z50.8, andDA(t) for z 5 0.4, 0.6,
0.8, 1.0 ~full lines, from bottom to top!. Successive curves ar
shifted upwards by two decades to avoid overcrowding. The
tance parameter ise521023 and the corresponding timests andts8
are marked by filled circles and squares, respectively. The da
lines are the first-scaling-law asymptotes, Eq.~27!. The open dia-
monds mark the points where the dashed lines differ from the
ones by 5%. The straight dashed-dotted lines exhibit the diffus
asymptotesDSt, DCt, andDAt, and the filled diamonds mark th
position where these differ from the full lines by 5%. The dott
lines, which coincide with the full ones fort>104, exhibit the
second-scaling-law asymptotes, Eq.~29!.
3-9
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the analogous figure constructed fore521022, one con-
cludes that the scaling-law description accounts for the M
quantitatively for t>t* and ueu <0.01. For larger distance
parameters, corrections to scaling become visible.

D. Rotation-translation-coupling effects

It might be adequate to start the discussion of rotati
translation-coupling effects with two side remarks. First,
was shown that the correlators for the dipole and the qu
rupole dynamics forz50.8 are in semiquantitative agree
ment with the experimental data for propylene carbon
@35#. Thus, the results to be discussed forz>0.6 can be
considered relevant for the interpretation of glass-form
van-der-Waals liquids. Second, the system under study
hibits two glass phases forw>wc . There is a critical elon-
gation zc so that forz.zc , correlations of the molecule’s
axis arrest for long times as do all other correlations of va
ables characterizing the structure. In particular,C1(t→`)
5 f 1.0. But for z<zc , dipole correlations exhibit ergodi
behavior, i.e.,C1(t→`)50. Precursor effects of this glass
glass transition atzc disturb the standard transition scena
@25,35#. This is the reason whyDA(t) for z50.4 is remark-
ably different fromDA(t) for the otherz shown in Fig. 9; for
z50.4, the elongation is too close tozc50.380. For ex-
ample, forz50.4, the corrections to von Schweidler’s law
which shift the dashed lines onto the full ones forts,t
,ts8 , are negative, while they are positive for the oth
cases.

The glass transition of the HSS is driven by density flu
tuations with wave numbers near the first-peak position
the structure factorSq close toq57.0/d. For the scale factor
for the a process of these fluctuations, defined byf̃q( t̃q)
5 f q

c/20, one getst̃7.056.0. For thea relaxation of the
tagged-particle-density correlations for the same wave v
tor, one gets a similar numbert̃7.0

S 55.0. One concludes tha

thea-scale factort̃S5tS /ts8511.6 for the approach ofDS(t)
to the diffusion limit is in the range within which relevan
density fluctuations decay to zero. The corresponding in
val for the crossover from the end of the von Schweid
decay to the beginning of diffusion is 2.2 decades. This
shown by the lowest curve in Fig. 9 and should be cons
ered as the normal behavior for the density-fluctuation
namics in simple systems. The MSD for the molecule’s c
ter behaves quite similarly;DC(t) for z50.8 is nearly
indistinguishable fromDS(t). However, Fig. 9 demonstrate
also thatDA(t) behaves differently. Forz 5 1.0 ~0.8,0.6!, the
above-specified crossover intervals are 3.3~3.1,2.8! decades
wide. This means that the crossover intervals ofDA(t) are
larger than those ofDS(t) or DC(t) by factors of about 13
~7,4!, and so are thea scalestA compared totS or tC . The
reason is the reorientational contribution to the MSD of
constituent atom, i.e., the second term on the right-hand
of Eq. ~2!. There are two effects. First, fort/ts8@ t̃1, the
dipole correlations are decayed to zero, i.e., the molecu
axis is distributed on the unit sphere with a constant pr
ability density. Therefore, there is the positive offsetX
5(zd)2/12 between the two functions referring to the ato
01150
D

-
t
d-

e

g
x-

i-

r

-
f

c-

r-
r
s
-
-
-

e
de

’s
-

and the center.DA(t)2DC(t)5X for t̃ 5t/ts8>t̃1 as is dem-
onstrated in the linear representation of thea-process maste
functions in Fig. 10. The slow decay of the relative offs
X/DCt explains that the ratiot̃A / t̃C is larger than unity,
increasing in conjunction withz. Second, steric hindranc
for reorientations increases withz. For z.0.8, thea scale
t̃1 for dipole relaxations becomes comparable to or lar
than t̃C . Therefore, there appears an interval 1,t/ts8, t̃1,
after the end of the von Schweidler–law regime and bef
the beginning of the diffusion regime, where th
DA(t)-versus-t diagram, in contrast to theDC(t)-versus-t
one, exhibits a curvature. This is shown forz50.8 and 1.0 in
Fig. 10.

If a hard sphere gets expanded to a dumbbell with a sm
elongation, the molecule’s center gets restricted more tig
in its cage. Therefore, providedz is small, the localization
lengthr C

c is smaller thanr S
c and it decreases with increasin

z. For z'1.0, the localization of one constituent atom of t
molecule restricts the motion of its partner. Therefore,r C

c is
smaller thanr S

c also for large elongations. Counterintuitivel
the theory does not lead to a monotonic interpolation
tween the specified limits. Ther C

c 2-versus-z diagram in Fig.
11 exhibits an oscillation andr C

c exceedsr S
c by about 10%

for z near 0.6.
For z<zc , one getsC1(t→`)50. If one neglects the

variation of the r C
c 2-versus-z curve, Eq. ~2! leads to r A

c 2

5r S
c 21(zd)2/12. The dotted line in Fig. 11 shows that th

formula explains the increase ofr A
c for z increasing up tozc .

For z increasing abovezc , the decrease of 12 f 1 and of r C
c

explains the decrease ofr A
c .

FIG. 10. a-relaxation master functionsD̃ as a function of the

rescaled timet̃ 5t/ts8 for z51.0, 0.8, and 0.6~from top to bottom!.
The curves forz50.8 (1.0) are shifted upward by 0.4~0.8! in order
to avoid overcrowding. Curves with labelsC and A refer to the
MSD for the molecule’s center and for the constituent atom, resp

tively. The filled diamonds mark the timet̃C , where the diffusion

asymptote is reached within 5%:D̃C( t̃C)51.05D̃Ct̃C . The corre-

sponding timet̃A for the constituent atom forz51.0(0.8,0.6) is

t̃A5140(72,39). The triangles mark the timet̃1, where the dipole

correlator has completed 95% of itsa decay:C̃1( t̃1)/ f 150.05.
3-10
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It seems plausible that the number of paths for the m
ecule through the system’s configuration space decre
with increasing elongation. Therefore, one might expect t
the diffusivity DA5DC is smaller thanDS and decrease
with increasingz. Figure 11 confirms this expectation fo
small and for large elongations. But, strangely, the calcula
diffusivity is not a monotone function ofz, and forz'0.6,
DC exceedsDS by about 30%.

IV. CONCLUSIONS

MCT predicts that the long-time parts of the densi
correlation functionsfq(t) of the solvent andfq

x(t) of the
solute deal with relaxation in the sense that they are su
positions of Debye-relaxation processes exp@2g(t/t0)#. They
deal with structural dynamics in the sense that the we
functions rq(g) and rq

x(g) for these superpositions ar
uniquely determined by the equilibrium structure. The cor
sponding dynamics is therefore referred to as structural
laxation. Within the structural-relaxation regime, the subt
ties of the normal-liquid dynamics merely enter via the va
for an overall time scalet0, which is defined with the aid o
the critical decay law, Eq.~16!. The structural-relaxation in
terval was estimated for the hard-sphere system~HSS! under
study ast.20t0 ~Sec. III B, Fig. 4!. The specified propertie
of the MCT dynamics are asymptotic ones, valid for lar
times near the transition point. The estimation of the rang
validity depends on the accuracy level required and also

FIG. 11. Squares and triangles are the localization leng
squared at the transition pointw5wc as a function of the mol-
ecule’s elongationz for the constituent atom (r A

c 2) and the center
(r C

c 2), respectively. The circles are the diffusivityDA5DC of the
molecule calculated fore520.01. The lines connecting the sym
bols are guides to the eye. The horizontal dashed line is a com
one indicating both the values of the square of the localiza
lengthr S

c 2 ~on the right scale! and of the diffusivityDS ~on the left
scale! for a tagged particle of the HSS. The dotted line is the fu
tion r S

c 21(zd)2/12 discussed in the text. The inset exhibits 12 f 1

as a function ofz, where f 15C1(t→`) is the long-time limit of
the dipole correlatorC1(t). The arrow indicates the critical elonga
tion zc50.380 for a glass-glass transition.
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the particular function under discussion Differentiation w
respect to time, as is considered in Eq.~4! for the velocity
correlatorKS(t), enhances oscillation features, i.e., dev
tions from relaxation behavior. Figure 5 demonstrates ind
that one would estimate the structural relaxation interval
KS(t) ast.40t0, i.e., somewhat more restrictive than for th
MSD.

For a normal liquid, the velocity correlator is positive fo
short times. It is also positive for times exceeding a cro
over timeth , where it exhibits a hydrodynamic long-time ta
proportional tot23/2 @1#. But, upon approaching the glas
transition point, the regime for hydrodynamics shrinks
lower frequencies. Therefore, the timeth diverges if the
packing fractionw approaches the critical valuewc . The
cage effect causesKS(t) to be negative fort.20t0. Even
more, the correlation of the particle velocity at timet with a
value opposite that of its initial value, sayC(t)5^vW S(t)•

@2vW S(t50)#&, is proportional to a completely monoton
function F(t/t0), Eq. ~25!. The functionC represents a re
laxation process in the sense of Eq.~23b!, where the weight
function r(g) is given by the structural function. These r
sults for the velocity correlator fort.20t0 express concisely
the essence of glassy dynamics, namely the relaxation ca
by the cage effect and determined by the Boltzmann fac
for the equilibrium structure.

The MSD increases with time according to the charac
istic two-step pattern of the MCT-transition scenario. The
is a stretched approach towards a plateau valuer S

c 2 followed
by arrest at the square of the localization lengthr S

2,r S
c 2

within the glass or by the stretched start of thea process
within the liquid, Fig. 2. The sensitive density dependence
the MSD near the plateau is described by the universal
mulas for the first scaling law, as is demonstrated in Fig
The same holds for the dipole correlatorC1(t). This is
shown in Fig. 8 by scalingC1(t) for three values of the
molecule’s elongation on the same functionsAusu g2(t/ts).
However, there is a large time interval at the beginning
the structural-relaxation regime, 20t0,t,t* '800t0, where
the universal leading-order-asymptotic formulas do not
scribe the MSD, as is shown in Figs. 6 and 7. The the
predicts similar results for all systems with a structure sim
lar to that of the HSS, i.e., for all van-der-Waals liquid
Obviously, it would be worthwhile to test by experiment
molecular-dynamics simulation whether the specified pred
tion is correct, and in particular whether MCT can reprodu
properly the structural relaxation of the MSD outside t
scaling-law regime.

The beginning of thea process of the MSD, i.e., the
increase ofDx(t) above the plateaur x

c 2 , is described by von
Schweidler’s law, Eq.~28!. It is exhibited in Fig. 9 for
t.ts by the dashed lines. Thea process terminates in th
diffusion law for long times, exhibited in Fig. 9 by th
straight dashed-dotted lines. Thea process follows well the
second scaling law, Eq.~29!, which is presented by the dot
ted lines. The crossover interval from the end of the v
Schweidler–law description~indicated by the open dia
monds! to the beginning of the diffusion process~indicated
by the filled diamonds! for the MSD of an atom is about two

s
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n

-
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decades wide, as shown by the lowest curve in Fig. 9.
same is true for the MSD of the molecule’s center. But
crossover interval for the MSD of the constituent atom of
molecule is much larger due to the rotation-translation c
pling. The expansion is more than an order of magnitude
z51.0. It would be valuable for an assessment of the M
for molecular systems if this prediction could be tested
molecular-dynamics simulation.

Bennemannet al. @36# have determined by molecula
dynamics simulation the MSD for the monomer and for t
center of a polymer for a model of a glassy polymer me
They identified for their data thea process in the sense o
MCT and interpreted it consistently with the univers
asymptotic formulas. They observed the expansion of
crossover interval for the monomer MSD relative to that
the center, similar to what is shown in Fig. 9 forz51.0, and
they attribute this expansion to the glassy dynamics of
Rouse modes. These modes for the polymer’s internal
grees of freedom are thus identified as part of thea process
@36#. Figures 9 and 10 corroborate their conclusions, alb
for the simplest polymer model only, namely a rigid har
sphere dimer.

Let us consider a one-dimensional model, where two h
spheres are restricted to move in a finite interval. One ca
lates easily the localization lengthr S of one of the spheres
assuming the other sphere moves freely between the wall
its partner. Similarly, one can calculate the localizati
length r C of the center of a dumbbell built by the tw
spheres. One findsr C.r S , i.e., the freely moving partne
provides a stronger hindrance for the motion in the cage t
the bonded one. Possibly, the resultr C

c .r S
c shown in Fig. 11

for z.0.6 is the analog of this phenomenon for on
dimensional localization. To corroborate this reasoning, F
12 exhibits as full lines the isotropic partg0

S(r ) of the solute-
solvent pair distribution function and the correspondi
structure factorS0

S(q) for w5wc for a dumbbell with
z50.6 @29#. The dashed lines exhibit the results for a sph
with diameter deff51.215d chosen such that its volum
agrees with that of the dumbbell. The well-known exclude
volume effects for this effective spherical solute are lar
than those for the tagged particle of the HSS. In particu
the structure factor peak is higher. Therefore, the localiza
length r eff

c 50.0588d for the effective spherical solute i
much shorter than the localization lengthr S

c50.0746d for
the tagged particle of the HSS. The ratior eff

c /r S
c decreases

with increasingz. The pair distribution function of the effec
tive sphere agrees reasonably well withg0

S(r ) for the dumb-
bell for r .1.5d. Therefore, the two structure factors a
close to each other on the wings of theS0

S(q) peaks and also
for small q. However, packing cannot be done as efficien
around the dumbbell as around a sphere of the same volu
Therefore, the pair distribution function for the latter is mu
bigger for r near deff than g0

S(r ) for the dumbbell. This
depletion effect leads to a reduction ofuS0

S(q)u at the peak
position and also for larger wave numbers. Hence, the de
tion reduces the magnitude of the mode-coupling coe
cients. As a result, the localization lengthr 0

c50.0863d, cal-
culated by using MCT equations for a simple system w
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only the isotropic part of the dumbbell structure factor, is n
only larger thanr eff

c , but it is even larger thanr S
c . The esti-

mated r 0
c is rather close to the true localization lengthr C

c

50.0808d for the dumbbell’s center. Only ifz becomes
even larger do mode couplings to the nonisotropic parts
the density fluctuations take over and compensate for
depletion effects. This leads to th
decrease ofr C

c with increasingz for z.0.6, as shown in
Fig. 11.

The above-discussed depletion effect means that
dumbbell is surrounded by a liquid of lower averaged dens
than specified by the packing fraction. Hence, the dumb
moves in a complex, which effectively has a larger distan
from the glass-transition point than is specified by (wc
2w)/wc . Such a lubrication phenomenon for the dumbb
in the complex might explain the increase of the diffusiv
exhibited in Fig. 11 forz;0.6. Diffusion in a dense liquid is
a collective phenomenon. A particle can move over a d
tance comparable to its diameter only if one of its neighb
moves. This neighbor can move only if its neighbor mov
and so on. On the average, a flow pattern will be built sim
to the motion of a sphere in an incompressible ideal liquid
was one of the original motivations for the formulation of th
MCT equation of motion to treat approximately the indicat
backflow phenomenon. Molecular-dynamics simulation h

FIG. 12. Pair distributiongS(r ) as a function of the distancer
between solvent particles and the center of the solute~upper panel!
and the corresponding solute-solvent structure factorSS(q) ~lower
panel! calculated within the Percus-Yevick theory for the critic
packing fractionwc50.516. The dotted lines refer to a tagge
sphere of the same diameter,dS5d, as the one of the solvent par
ticles. The dashed lines refer to a spherical solute of diameterdeff

51.215d ~see the text!. The full lines exhibit the isotropic part o
the distributiong0

S(r ) and the structure factorS0
S(q) for a dumbbell

consisting of two fused hard spheres of diameterd with the elon-
gationz50.6 @29#.
3-12
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MEAN-SQUARED DISPLACEMENT OF A MOLECULE . . . PHYSICAL REVIEW E 64 011503
shown that a typical event underlying the mentioned av
aged backflow pattern might consist of quasi-on
dimensional motions of clusters of particles@37#. It seems
possible that the bonding of two atoms to a molecule sta
lizes the cluster, provided the elongationzd is smaller than
the diameter of the ring formed by the moving cluster. If th
were the case, the diffusivity for the molecule should
larger than that for a tagged atom. Hence, it is not obvi
that the nonmonotone variation of the diffusivity wit
changes ofz, which is shown in Fig. 11, is a mere artifact o
the approximations underlying the presented theory.
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APPENDIX: MODE-COUPLING-THEORY MODELS FOR
COLLOIDS

In this appendix, it will be shown how the MCT formula
for simple systems can be specialized to models for the
namics of colloids. Within this frame, a representation of
velocity correlator in terms of a completely monotone fun
tion Fcol(t) will be derived. To begin, let us remember th
definition of Laplace transforms of functions of time, s
F(t), to functions of the complex frequencys: F(s)
5*0

`dt exp(2st) F(t). Applying this transformation tofq(t),
Mq

reg(t), andmq(t), one can rewrite Eq.~6! together with the
initial conditions fq(t50)51 and ] tfq(t50)50 as a
double fraction forfq(s):

fq~s!51 / $s1Vq
2 / @s1Mq

reg~s!1Vq
2 mq~s!#%. ~A1!

The analogous result can be obtained for the tagged-par
correlator,

fq
S~s!51 / $s1~qvS!2 / @s1Mq

S,reg~s!1~qvS!2 mq
S~s!#%.

~A2!

Equation ~4! can be rewritten as a relation between t
Laplace transformsDS(s) and KS(s) of DS(t) and KS(t),
respectively:

KS~s!53s2 DS~s!. ~A3!

The small-q expansion of Eq.~A2! leads to

KS~s!53vS
2 / @s1M0

S,reg~s!1vS
2 mS~s!#. ~A4!

Here M0
S,reg(s)5 limq→0 Mq

S,reg(s), and mS(s)
5 limq→0 q2mq

S(s) is the transform ofmS(t) from Eq. ~14a!
@12#.

In a colloid, there is a contribution to the fluctuating for
due to the interaction of the particles with the suspend
liquid. This leads to contributions to the ratesMq

reg(s) and
Mq

S,reg(s), which are large compared to the scale for t
frequencys one wants to consider. Therefore, it is the co
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ventional first approximation step of a theory for colloid d
namics to coarse-grain correlation functions on time scale
the order of 1/Mq

reg(s) and 1/Mq
S,reg(s). For the correlators

considered here, this means thats1Mq
reg(s) in Eq. ~A1!, s

1Mq
S,reg(s) in Eq. ~A2!, and s1M0

S,reg(s) in Eq. ~A4! are
replaced by nq5Mq

reg(s50), nq
S5Mq

S,reg(s50), and n0
S

5M0
S,reg(s50)5 limq→0nq

S , respectively. Let us indicate th
various functions, obtained by this specialization of MCT,
superscripts ‘‘col.’’ The equations of motion, obtained by t
backtransformation of the so-modified Eqs.~A1! and ~A2!,
are @22,23#

tq ] tfq
col~ t !1fq

col~ t !1E
0

t

dt8 mq
col~ t2t8! ] t8fq

col~ t8!50,

~A5!

tq
S ] tfq

S,col~ t !1fq
S,col~ t !

1E
0

t

dt8 mq
S,col~ t2t8! ] t8fq

S,col~ t8!50. ~A6!

Heretq5nq /Vq
2 andtq

S5nq
S/(qvS)2 are times characterizing

conventional colloid dynamics. The interaction potentials b
tween the particles, which cause the cage effect, are no
tered by the introduction of the solvent. Therefore, the
pressions for the mode-coupling contributions to the kern
Eqs.~7! and ~9!, keep their functional form,

mq
col~ t !5Fq@fk

col~ t !#, mq
S,col~ t !5F q

S@fk
S,col~ t !,fp

col~ t !#.
~A7!

Equations~A5!–~A7!, together with the initial conditions
fq

col(t50)51 andfq
S,col(t50)51, define a unique solution

with all the general properties of correlation functions@32#.
Since the coarse graining has altered thes→` asymptote of
the correlator transforms relative to that exhibited by E
~A1! and ~A2!, the short-time behavior is altered, name
fq

col(t→0)512utu/tq1•••, fq
S,col(t→0)512utu/tq

S1•••.
Since s was dropped in the denominator of Eq.~A4!, the
velocity-correlator Laplace transform for the colloid dynam
ics does not tend to zero for larges; rather KS

col(s→`)
53D0

S , with the abbreviationD0
S5vS

2/n0
S . This suggests re-

writing the coarse-grained velocity correlator as

KS
col~s!/35D0

S2D0
S 2 Fcol~s!, ~A8a!

Fcol~s!5mS
col~s! / @11D0

S mS
col~s!#, ~A8b!

mS
col~ t !5F S@fk

S,col~ t !,fp
col~ t !#. ~A8c!

The solutions of Eqs.~A5!–~A7! are completely mono-
tone @32#. Kernel mS

col(t) is a combination with positive co
efficients of products of completely monotone functions b
cause of Eqs.~A8c! and ~14!, and therefore it is completely
monotone as well@33#. Because of Bernstein’s theorem, on
can writemS

col(s)5*0
`@s1g#21r(g)dg with a non-negative

distribution r(g). Therefore, the following four propertie
hold @33# for mS

col(s): ~i! it is holomorphic for all complexs,
except for negative real numbers;~ii ! mS

col(s)* 5mS
col(s* );
3-13
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~iii ! mS
col(s)→0 for Res→`; and ~iv! Im mS

col(s),0 for
Im s.0. One concludes furthermore that 11D0

SmS
col(s)Þ0

for all s except, possibly, negative real values. From E
~A8b! one concludes that alsoFcol(s) exhibits the properties
~i!–~iv!. Hence,Fcol(s) is the Laplace transform of a com
pletely monotone functionFcol(t) ~Ref. @33#, Chap. 5, theo-
rem 2.6!. The backtransformation of Eq.~A8a! leads to the
desired representation

KS
col~ t !/35D0

S d~ t !2D0
S 2 Fcol~ t !, ~A9!

whereFcol(t) obeys Eqs.~23!.
Let us add that the backtransformation of Eq.~A8b! leads

to an equation of motion determiningFcol(t) from the kernel
mS

col(t):
J

D

ys

e

s

P

s.

J

01150
.

Fcol~ t !5mS
col~ t !2D0

S E
0

t

dt8 mS
col~ t2t8! Fcol~ t8!.

~A10!

Integrating Eq.~A9! twice with respect to the time and usin
Eq. ~A10!, one gets an equation of motion for the MSD
the colloid,

DS
col~ t !5D0

S F t2E
0

t

dt8 mS
col~ t2t8! DS

col~ t8!G . ~A11!

This result was derived originally along a different rou
@23#. It implies limt→0DS

col(t)/t5D0
S .
-
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