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Mean-squared displacement of a molecule moving in a glassy system
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The mean-squared displacemé@uiSD) of a hard sphere and of a dumbbell molecule consisting of two fused
hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal
liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the
MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The
MSD is found to exhibit a large time interval for structural relaxation prior to the onset af fv@cess, which
cannot be described by the asymptotic formulas for the mode-coupling-theory—bifurcation dynamies. The
process for molecules with a large elongation is shown to exhibit an anomalously wide crossover interval
between the end of the von Schweidler decay and the beginning of normal diffusion. The diffusivity of the
molecule is predicted to vary nonmonotonically as a function of its elongation.
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[. INTRODUCTION phous nonergodic solid. Thus, MCT deals with a model for
ideal liquid-glass transitions. The transition implies a novel

The mean-squared displacement(t) (MSD) is a very  dynamical scenario. Its features have been worked out by
transparent concept for the discussion of liquid dynarffigs ~ asymptotic solution of the equations. The leading-order
For long times, dr?(t) increases proportional teand to the ~ asymptotic formulas establish universal results for the MCT
diffusion constant of the fluid. In an ideal solid, on the othertransition, such as scaling laws, power-law divergencies for
hand, the long-time limit ofsr2(t) is a finite number char- the time scales, and anomalous exponents for the spectra
acterizing the square of the particle’s localization length[12,13. Many tests of the relevance of the MCT results for
Therefore, the long-time behavior F%(t) depends sensi- the explanation of the dynamics of glass-forming liquids
tively on control parameters such as density or temperature ffave been performed, which are reviewed to some extent in
the system is close to a liquid-glass transition point. TheRef. [14]. Let us only mention here the recent analysis of
MSD is thus particularly well suited to study glass-transitiondata measured for propylene carbonté], studies by
precursors. It can be measured by incoherent inelastidneans of the optical Kerr effe€16,17, and the analysis of
neutron-scattering experiments. Howevér(t) has to be Simulation data for a binary Lennard-Jones liq{id] and
extracted as a small-wave-number limit of the intermediatdor silica[19]. The outcome of these tests qualifies MCT as a
scattering functio1], and this makes it very difficult to candidate for a theory of glassy dynamics, and it seems jus-
produce accurate data for large time intervals. Dynamidified to continue the preceding studies by exploring some of
light-scattering spectroscopy and sample-preparation tectibe implications for the MSD.
niques for colloidal suspensions have improved greatly in The intention of this paper is to identify further MCT
recent years. It was demonstrated that very informative datégsults for future tests of this theory. The previous work on
for the MSD of hard-sphere colloids near the glass transitioihe hard-sphere systeHSS [20—24 shall be continued by
can be obtainedi2], and promising results for this system analyzing in detail the MSD for a tagged particle. The work
have also been measured by direct-imaging technifgids ~ ©n the MCT for molecular systeni&5] will be extended by
Molecular-dynamics simulations are well suited to get accu€valuating the MSD for the interaction sites of a symmetric
rate data for the MSD for liquids near the glass transitiondumbbell consisting of two fused hard spheres as well as for
This was demonstrated for a binary Lennard-Jones mixturéle molecule’s center. The paper is structured as follows. In
[5], for a liquid of diatomic moleculefs], for models for the Sec. Il, the equations to be solved are listed and the concepts
van-der-Waals liquid orthoterphenj,8], for a model for tO be used to discuss the results are described. Section Il
water [9], for a hard-sphere-colloid mod¢l0], and for a  Presents the results for the MSD and the analysis of its prop-
model of silica[11]. In this paper, general features and someerties. In Sec. 1V, the findings are summarized.
guantitative results for the evolution of the glassy dynamics
as exhibited by the MSD will be considered within the
mode-coupling theoryMCT) for ideal liquid-glass transi- Il. BASIC FORMULAS
tions.

The basic version of MCT is built on approximately de- ) _ _ _
rived closed equations of motion for the autocorrelation I this section, the systems to be studied and the functions
functions of density fluctuations. The essential input infor-t0 be used for a description of their dynamics shall be de-
mation is the equilibrium structure factors, which are antici-fined. A system oN atoms of massn distributed with den-
pated to vary smoothly with the system’s control parametersSity p is considered as solvent. The points in configuration
At certain critical values for the latter, bifurcations occur space are specified by the particle positions, «
from solutions for an ergodic liquid to ones for an amor-=1,2, ... N. The basic variables for the description of the

A. Description of the system
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structure are the density fluctuations with wave veajpr molecule’s  correlators ¢2"Z(t):(pg’z(t)*pgz)/wg'z.
pazzkexpﬁ.ﬂ()_ If (---) denotes canonical averaging for These correlators also determine the desired functions, since
temperatureT, the structure factor i§;=(|pg|?)/N, where  [1,29]

q:|ﬁ| is the wave number. As the simplest example for a #S()=1—q2 Ag(t) +O(q?) (58
solute, a tagged atom of mass; and positionFS shall be a '

considered. The distributiorl (3f the atom is described by the ¢g(t)=l—q2 Ac(t)+0(g%), (5b)
density fluctuatiorpgz exp(q-rg). The solute-solvent inter-

action shall be characterized by the direct correlation func- Ba()=Cy(1)+0(g?). (50

tion c(?:(pg*pa)/(psq). As a more complicated solute, a

symmetric rigid diatomic molecule shall be chosen. Its posi- B. MCT approximations

tion is specified by two interaction sites,(,r s), which have In this section, those equations shall be listed that have to

the same mass, . The position of the molecule can also be pe solved numerically. Within the Zwanzig-Mori theory, an
described by its centarc=(r,+rg)/2 and the unit vector exact equation of motion can be formulated for the density
6=(Fa—rg)/L, whereL = |Fo—Tg|. The configuration vari- correlator: o7 ¢q(t) + Q7 do(t) + [odt’ Mg(t—t") dpr hq(t’)
ables for the molecule can be built with the two density=0. HereQZ=v2q%S, with v denoting the thermal veloc-
fluctuationsp®=exp(q-r,); a=A, B. Equivalently, one can ity Specifies a characteristic frequenl,, and M(t) de-

q notes a fluctuating-force correlator called the relaxation ker-
. S A dg nel [1]. Within MCT, the kernel is split into a regular part
“charge” fluctuationsp = (p; —pg)/ V2. The solute-solvent v 4t) dealing with normal-liquid effects and a mode-
interaction can be characterized by the direct interaction-sitecoupling kernelﬂﬁmq(t) describing the cage effect. If one
solvent correlation$ﬁ=05 =<p§*pa>/[p5qwg] [26]. Here introduces an operatoR for the regular dynamics by
wy“=1*sin@L)/qL denote the intramolecular structure Req(t)=[dfdo(t)+[odt’ MgXt—t") dp pq(t')1/QF, one

use the number fluctuationpglz(p/5+pg)/\/§ and the

factors. can write

Three kinds of mean-squared displacement functions of .
time t shall be discussedir2(t)=([r,(t)—ry(0)]?). Here R¢q(t)+¢q(t)+f dt’ my(t—t") 3y pg(t')=0. (6)
and in the following, the labet=S, C, andA refers to the 0

position of a tagged particle, of the center of the molecule
and of the atomic center in the molecule, respectively. It will
be more convenient to use the following abbreviation:

The crucial step in the derivation is the application of Ka-
wasaki’'s factorization approximations to express the kernel
mq(t) as the mode-coupling function, of the correlators,

Ay(t)=% 5r§(t), x=S,C,A. N My (t) = Fyl dr(t)] (78)
q a '

The MSD of the molecule’s constituents can be decomposed 1
into one contribution due to translation of the center and one j:q[”fk]: f dRV(ﬁ;E.ﬁ)Tk~fp- (7b)

due to reorientation of the axj25], 2(2m)3
Ap(D)=Ac(t)+ 15 L2 [1-Cy(1)], (20 Herep is short forq—k. The coefficientsv(q;k,p) are
given in terms of the structure factf27].
where None of the MCT results for structural relaxations, in par-
L ticular none of the universal results to be cited in Sec. Il C,
Ci(t)=(e(t)-e) (3)  depend on the model fdvl{t). The details of the kernel

merely influence the value of some time scale to be denoted
is the dipole correlator. The time derivatives of the MSD pelow ast,. But the kerneM{fg(t) shall be specified in order
provide the velocity-autocorrelation functi¢h]. Let us con-  to have controllable quantitative results for all times. Specifi-
sider the one for the velocitys(t) of the tagged particle cally, a model withM F4t)=0 shall be chosen. The operator

only, Kg(t)=(vs(t)-vs), where R shall be complemented by an indékindicating that a
Hamiltonian dynamics is considered for the short-time mo-
FALD=FKg(1). (4)  tion,
RFGo(t) = dg(t) 1 Q. (8a)

The nontrivial time dependence of(t)—r,(0) comes
about since the forces on the solute fluctuate in time, and thighis model overemphasizes oscillation features. A more re-
is caused by the density fluctuations of the solvent and by thgjistic model would include at least some friction term as it is
fluctuations of the probability density of the solute constitu-caysed for low-frequency phenomena by binary collision
ents. These quantities are described by the density correlatgyents. But no detailed proposals for the treatment of such
ba(t)=(p3(1)* pg)/{|pgl?) of the solvent, by the tagged- effects have been made so far within MCT. Some results also
particle-density COI‘I’elatOI‘qqu(t)=<p2(t)*pq§>, and by the will be presented for a simplified colloid model. Here, the
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inertia term from Eq(8a) is neglected and the regular term is t

chosen as g-independent white-noise kernel. It is explained B: Ag(t)—Djt+ Dﬁf dt’ mg(t—t') Ag(t")=0.

in more detail in Appendix A that this model corresponds to 0 (12b)

the conventional treatment of colloids by coarse-graining the

time over intervals of the duration of collisions of the solventThe same procedure leads to the equation of motion for the
molecules with the mesoscopic colloid particles. As a resultmMSD of the center:

the short-time motion is treated by a Brownian dynamics,

t
REBpq(t) =74 d (V). (8b) H: 9 Ac(t)—vit+o2 Jodt’ my(t—t") Ac(t’)=0,

Here Tq=Sq/(D0q2) with Dy denoting the single-particle (13
diffusion constant.

Equationg6) and(8) hold analogously for the solute cor-
relatorsgg(t), x=S, N, andZ. One gets (lqs)2=.v§q2 with
v denoting the tagged particle thermal velocity. The relax-With me=2m,, if the limit L—0 is considered.
ation time for the Brownian motion is§=1/(Dgg?) with The kernels in the preceding Eq40)—(13) are given by
D§ denoting the tagged particle short-time diffusivity. The mode-coupling functionals,
more involved expressions for the characteristic frequencies
Q4 can be found in Ref25]. Brownian dynamics shall not my(t) =F [ (1), dp(D)], (14a
be considered for the dumbbell molecule. The fluctuating-

where the kernel is denoted logy(t) andv is the thermal
velocity for the molecule’s translatidi25]. The problem of
the molecule’s dynamics reduces to that of a tagged atom

force kernels are functionals of the correlataﬂsé(t) and o 1 (= e
dq(1): ]—'X[fﬁ,fp]=@f0 dk K pScv*(k) T T, x=SN,Z.
mi(t)=F5L (1), bp(D)], (9a) (14D
Here vS(k)=(c))? [27], vN(k)=2(c)?w}, and v?(k)

~ o~ 1
]:é[fii!fp]:(

BJ dkV¥(q;k,p) TF,, x=SN,Z. =(L2/6)(ck)?wi [25]. A fluctuating force with vanishing
2)

wave vector can couple to density fluctuations of the solvent
OB for all wave vectorsk provided the atom or molecule can
Again, p is short forq— k and the coefficients(q:K,p) are absorb the reppil with wave vecterk. Therefore, o)?e needs
given byS, and the direct correlation functiofi85,27. It is the superposition of density correlatafg(t) and ¢j(t) for
cumbersome to calculate the requiee 0 limits in Egs.(5) all wave numbers for the calculation of the kernels,(t).
numerically from numerical solutions faﬁé(t). It is more
adequate to carry out the limit analytically in the equations C. Universal results

of motion for ¢3(t) so that one gets equations of motion for  ynjversal properties of the MCT—glass-transition sce-
the desired functions. The nontrivial parts of these equationgario are formulated by the leading-order asymptotic expres-
are convolution integrals defined with thie-~0 limits of the  sjons for the long-time dynamics for states near the transition
kernelsmg(t). One gets for the dipole correlator, points. This paper focuses on features beyond the universal
. ones, but the universal formulas shall be used as reference. In
2 2 2 / Y "N_ this section, those formuld42] shall be compiled that are
FCA+ 205 Co()+ 205 fodt M(t=1) v Co(t) =0, needed in Sec. Il for the description of the Iroesults.
(10 The equilibrium structure of the system may depend on,
. ] say, n control parameters, which can be combined to a
wherevg is the thermal angular velocity of the molecule control-parameter vectdr. A separation parameter(V), a
[25]. From the equation fopg(t), one gets a Zwanzig-Mori  smooth function ofV, can be defined with the aid of the
equation for the velocity correlat¢d 2], mode-coupling functionaF, . For states with control param-
. etersV such thato <0, correlation functions decay to zero:
ﬁtKS(t)Jrvgf dt’ me(t—t') Kg(t')=0. (11)  ¢q(t—=)=0. Butfor states withr>0, density fluctuations
0 exhibit spontaneous arresti(t—=)=f,>0. The Debye-

) ] ) ) Waller factorf is to be evaluated from the mode-coupling
Integrating twice ovet, one gets, with the aid of E¢4) and  ,nctional F, In Egs. (7) via the equationf/(1—f,)

the initial conditionsAs(0)=0 and3:As(0)=0, =F,[fi] [27]. The set of critical pointsv®, defined by
; o(V®) =0, separates liquid states from glass states. This re-
H: ﬁtAs(t)—véHvéf dt’ mg(t—t') Ag(t’)=0. sult holds for all correlatorspa(t)=(A(t)*A)/{|A|?) of
0

variables A coupling to density fluctuations. While(t

(129 —o) vanishes for the liquid, generically, the limits
. . s
The corresponding equation for Brownian short-time dynam-" ‘{A(t—’oo) is positive for the glass. IA refers topg, py,

ics [23] is derived in Appendix A: or e, fo denotes the Debye-Waller factdy, the Lamb-
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Mossbauer factorfg', or the Edwards-Anderson parameter t/=toB ™/ |a|”, y=(1/2a)+(1/2b). (18D

f,, respectively, of the glass. Crossing the transition points,

the long-time limit changes discontinuously from zero to theFollowing the terminology of the glass-transition literature,
critical valuef§. For the variation off 5 upon approaching the decay ofga(t) below the plateauy is called thea

the transition from the glass side, one gets for smaih  process. For this process, the second scaling law of MCT in
leading order leading order foror— —0 holds:

fa=fS+ha]o|/ V1I-X. (15)

Hereh, is called the critical amplitude for variabke Every _ -
point V¢ is characterized by a numbkr 0<A<1, whichis  The control-parameter-independent shape funcig(t) is
called the exponent parameter. The significanca & ex- tO be evaluated from the mode-coupling functionals at the
plained below in connection with EqeL6)—(19). It is a mat- critical pointsV°. The differences of the dynamics as they
ter of convention not to incorporatél — X in the amplitude ~ are caused by different models for the short-time dynamics
ha, in order to simplify some of the following formulas. The mMerely enter via differences in the scdlg For short res-

da()=a(t), T=t/t), t,<t. (19

quantitiesfz, h,, and\ are calculated fron¥,. They are  caled timest, one getsga(t) =fa—hat®+h,t?°+ ..., so
equilibrium quantities that are the same for Hamiltonian andhat Eq.(18a is reproduced. The ranges of applicability of
Brownian dynamics. the first and the second scaling laws overlap; both scaling

The parameteh determines an anomalous exponent laws imply von Schweidler’s law fotr,<t<t .
0<a< 3, which is called the critical exponent. The equation  Suppose the system is driven through the transition point
I'(1—a)?/T'(1—2a)=X\ holds, wherd" denotes the gamma V° by smooth variation of some parameteétssuch as the
function. The long-time decay at the critical point is given, temperature, the density, or, for a colloid, the salt concentra-

up to corrections of order 23, by the power law tion of the solvent. Lety® denote the value wherg(6°)
=V°. Then one can write forr, in leading order for small
da(t)=fa+ha(te/t)?, =0, t/ty>1. (16) (68— 6°), the expressioor=C,(6— 6°)/6°. The constanC,

depends on the choice éfand connects the distance param-

The A-independent time, is the relevant microscopic scale eter e=(6— 6°)/6° with the relevant separation parameter
for the bifurcation dynamics. It depends on all details of the,

transient dynamics as well as on the mode-coupling func-
tionals for parameters at the transition point.

The first scaling law of MCT deals with the dynamics for D. The model
smallo in a time interval wherey= ¢A(t) — % is small. In a Hard spheres of diametershall be used as a model for
leading expansion fos—0 and »—0, one gets the solvent atoms. For this case, all equilibrium quantities are
specified by the packing fractiop=mwpd®/6. The MCT
da(t)=Fa+haG(1), (178 model for the hard-sphere systdiSS will be defined by
two further technical assumptions. First, the structure factor
G(t)=\|o| g.(t/t,), o=0, (17 Sy and the direct correlation functian, are evaluated within
the Percus-Yevick theoi]. Second, the wave numbers are
t,=to/|o]®, S=1/2a. (179  discretized to 100 equally spaced valuesd

=0.2,0.6,1.0...,39.8. The details of the transformation of
the functional in Eq(7b) to a polynomial in the 100 vari-
fbles¢q(t) can be found in Refl22]. Representative solu-
tions are shown in Ref§24] and[28] for the Hamiltonian

The functionsy. (t) are determined by. Thus, the control-
parameter dependence of the dynamics is determined by t
correlation s?ale/m ap:i by the first CI’ItI-Ca| time scale; dynamics and in Ref22] for the Brownian dynamics. There
One getgy-(t—0)=1/t% so that Eq(16) is reproduced for i’ 5 |iquid-glass transition at the critical packing fraction
fixed large t if o tends to zero. Sinceg,(t—=) ¢ .~0.516[22,27. For the exponent parameter, one gets
=1/y1—N\, also Eq.(15) is reproduced. =0.735, and this implies

The equationg_(t—)=—Bt°+0O(1/?) holds. The
anomalous exponerts, 0<b<1, which is called the von a=0.312, b=0.583, B=0.836, §=1.60, y=2.46.
Schweidler exponent, is to be calculated from the equation (203
I'(1+b)?%T(1+2b)=\. The constanB is of order unity.
Substituting this result into Eqg17), one gets von Sch-
weidler’s law for the decay of the liquid correlator below the
plateauf,

For the separation parameter one gets in leading order
o0=154¢, e=(o— @) o;. (20b)

) =fS—ha (t/t))b, t <t, —0. 18 The microscopic time scaleg, for Hamiltonian dynamics
Pal=Ta—ha (L)% 1o 7 (183 [28] and Brownian dynamicg22], respectively, are

The control-parameter dependence is described by the sec- H B )
ond critical time scale, ty =0.0236(d/v), t5=0.00265/Dy. (21)
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As an atomic solute, a tagged particle of the solvent shall be 1.0 :
considered, i.e.mg=m, and cqS is identical with the direct a0 (&)
correlation functiorc, of the HSS. As a molecular solute, a 0.5 1 -
symmetric dumbbell of two fused hard spheres of diameter A\ e3 2
and massn,=m shall be chosen. The elongatigi=L/d 0.0 [i\\/ /rr<=
shall be used as the control parameter of the solute. The —~ WV
wave numbers are chosen discrete as above. The direct cor- S -0.5 i
relation functioncﬁ is expressed as series of contributions =~ 10 , ,
c(q),/=0,1,..., obtained by expanding the molecule- =) 1 e>0 (b)
solvent correlations in spherical harmoni@s]. The sum Mw 0.5 2 - .
over/ is truncated a¥’.,=8. Thec,(q) are evaluated with i f\3
the Percus-Yevick theorjy29]. Representative results for the 0.0 il KX
molecule’s correlatorsby (t), ¢5(t), andCy(t) are shown in 1 201,
Ref.[25], and those foas(?(t) for the Brownian dynamics are 05 ¢ l i
in Ref.[23].

The figures to be discussed below and the numbers to be 0 02 04 06
mentioned are evaluated for the above-specified model as t
follows. First, for a representative set of packing fractions,
Egs.(6) and(7) are solved for the density Corre|atQ’5§(t), FIG. 1. Normalized velocity-correlation functionfSS(t)/(3v§)

both for Hamiltonian as well as Brownian dynamics. Thesefor a tagged particle of the hard-sphere sys@i8S. The dotted
correlators are used to define the kernels in E@js.so that, lines with labelc refer to the critical packing fractiop.~0.516.
as a second step, the tagged particle correlaﬁ@(s) could The full lines with labelsn=2 and 3 are calculated for distance
be evaluated, also for both examples for the short-time dyP2rameters=(¢—¢q)/¢c= 10" for the liquid (e<0) and for

' _ - vely. . ,
namics. Furthermore, for every, the equations for the mol- t.he glass €>0), respectively. Here a.nd in some of the foﬂo‘,ﬂv'ng
figures, an arrow marks the time 0 where ty=t,

: N.Z
ecule s_correlatorsaﬁq (t) are solved _for 1Q values for the =0.0236@/v) is the time scale from Eq416) and (21) for the
elongation. These results are substituted into EGsh for  citical decay. The units of length and of time are chosen here and

the kerr_1e|smx(t) S0 that, as a last step, Eq20)—(13) for 5 the following figures so that the particle diamettrand the
the desired funCtlonAX(t), Cl(t), ansz(t) can be solved. thermal velocities =pgare unity.

increases, the localization lengtly decreases. As a result,
ll. RESULTS the frequency of the oscillations of the particles in their fro-
A. The diffusion-localization transition zen cages increases, as is shown in Fig).But, in contrast
: : . to what is found for liquid states, the damping of the oscil-
. 'f. a tagged particle V\_/ould experience a mere NeWton'aqations decreases upon compression. This reflects the forma-
friction force, the velocity correlations would decay expo- tion of anomalous oscillation peaks in the density-fluctuation

ngntially, KS(t)“.qu_(t/T)]' The. cage effc_act in dense Ii_q- spectra, which have properties of the so-called boson peaks
uids manifests itself by a qualitatively different behavior, of liquids and glassek24].

name!y by oscnlatory variations with a decay.bifs(t) to The ideal liquid-glass transition implies a transition from
negative value$l]. Figure 1a) demonstrates this phenom- a regime with particle diffusion fop< ¢, to one with par-
enon. With increasing density, the crossover time to negativgcle localization fore= ¢ . The former ?s characterized by
values shortens and the damping of the oscillations increaseB.S>0 and 1fs=0 and tche latter byDs=0 and 1f<>0.
A Green-Kubo formula relates the particle diffusivids t0 - 15 o ptieties of the glass-transition dynamics occur outside
the zero-frequency velocity spectruls=(1/3)/qdtKs(t)  the transient regime. They can be discussed best on logarith-
[1]. Negative contributions t&g(t) reduce the diffusivity mic scales as in Fig. 2. For very short times, dayto,
with increasingy. From Eq.(11), one getDg as the inverse nieraction effects are unimportant and {ingA (t)/t2
of the zero-frequency spectrum of the relaxation kef&]:  _2/5 refiects ballistic motion. For times larger thay the
Ds=1/Jodtms(t). From Egs.(12), one obtains for the ;e effect leads to a suppressioma{t) below the short-
long-time asymptote of the MSD I'{.nwAS(t)/t:DS [1]. . time asymptote. For such large times thﬁaag(t)/d2 reaches
SFor glass Sstate:s, density fluc__tuat|ons arrest fg long t'meﬁjnity, the MSD approaches the diffusion asymptate(t)
¢g(t—)=1>0. The Lamb-Mssbauer factofj is to be  _p ¢ a5 is shown by the dotted straight lines drawn for the
evaluated from the mode-coupling functlorﬁﬁ in Egs.(9)  curves with labelsi=1 andn=9. Upon increasingp to-
via the equatiorfg/(1—fg)=F¢[f2.f,] [27]. It approaches wards ¢, , the diffusivity decreases towards zero. Figure 3
unity for g tending to zero. A localization lengths can be  ghows that the power Ia@é’yoc |€| for || <0.1 holds.
introduced to characterize the width of tHe-versusq The lowest line in Fig. 2 deals with the same glass state
curve: f=1—(qrg)?+0(q*). From Eq.(5a), one gets for ,=1.1¢,, which was considered in Fig.l) for the label
the MSD Iim_,wAS(t)zré. Using Egs.(12), one can ex- n=3. For this density, there is no obvious glassy dynamics.
press 3 as the inverse of the long-time limit of the relaxation Rather,Ag(t) has approached its long-time limi§ after the
kernel[12]: r§=1/mg(t—o)=1/Ff,f,]. If the density oscillations have disappeared for=1. Decreasinge to-
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<4, i.e., fore=0.05, are no longer described by tkie law.
The range of applicability for the asymptotic description of
ré is remarkably smaller than that for the corresponding de-
scription of f, for intermediate wave numbefg2].

The glass curve foe=0.01, shown in Fig. 2 with the
labeln=6, exhibits a decay between the end of the transient
oscillations and the arrest a§, which is stretched over a
time interval of about two orders of magnitude. A similar
two-decade interval is needed for the liquid curve with label

2 0 2 4 6 n=6 to reach the critical valuer§)?. After crossing (%)?,
log,,t two further decades of an upward bent jgig(t)-versus-
log; gt variation are exhibited before the diffusion asymptote

FIG. 2. Double logarithmic presentation af(t)=6r5(t)/6 for  is reached. The indicated slow and stretched time variation is
the mean-squared displacemémtSD) &r(t) for a tagged particle  referred to as glassy dynamics.
of the HSS. The dotted line with labekefers to the critical packing
fraction ¢, and the full ones tae=*=10""2. The straight dashed
line with slope 2 exhibits the ballistic asymptotef)%/2. The . . . .
straight dotted lines with slope 1 exhibit the long-time asymptotes FOr times outside the transient regime, $aC*t,, the
Dst of the two liquid curves fon=1 and 9. The horizontal line density correlators can be written in the formy(t)
marks the square of the localization length at=¢.: r? =g (t/ty). Herety is the scale introduced in E¢L6). The
=0.005 57d>. functions¢;§ are determined uniquely by the mode-coupling

functional 7, i.e., they are given by the equilibrium struc-
wards ¢, the softening of the glass manifests itself by anture. This holds for all choices of the regular kernels in Eq.
increase of the localization lengtly. At the transition point  (6), in particular for the two models defined by E¢8a) and
=@, the critical valuer$=0.0746d is reached. This up- (8b) [25,28,30,3]1 Corresponding results hold for the den-
per limit for r is consistent with Lindemann’s melting cri- Sity correlators of the tagged atof@0] and of the molecule
terion [27]. Using Eq.(15) for f, and qu and substituting  [25]- The solutions of the specified MCT model for colloids
these formulas intaFS[ 2, f,], it follows that the glass in- @€ completely monotori82]. A function F(t), defined for.
stability at ¢, causes a/o anomaly for the localization t>0, is called completely monotone if all derivatives exist
length, and

ré=r§2—hs\/3/\/m+0(o-), 22) (—alat)"F(t)=0, n=0,1,... . (239

According to Bernstein’s theorem33], this property is
wherer$?=0.00557d?> and hg=0.0116d°. Figure 3 dem- equivalent to the existence of a distributipfry)=0 so that
onstrates that the leading asymptotic formula accounts for

B. The structural-relaxation regime

the r2-versuse dependence foe<0.01. But the data fon F(t)= f:e_“p(y) dy. (23b)
€
02 02 01 00 01 <10° Thus, one can write for t=C*ty,  ¢q(t)
. ' ' < 160 =[ge "W p (y) dy with py(¥)=0, ie., the functions
- ¢;§ deal with relaxation. Corresponding formulas hold for
the solute correlatorsbé(t). Representative examples for
0.1 ¢ i) 40 pq(y) are discussed in Reff34].
From Egs.(5), one getsC,(t)=Cj (t/ty) for t=C*t,,
120 whereC7 is completely monotone, and also
00 1
© Ay (t)=AX(t/ty), t=C*ty, x=S,C,A. (24)

0.4 0.5 0.6 Here, the function€} andAj are determined by the equi-
¢ librium structure. With Eq(4), one can express the velocity
FIG. 3. The diamonds are the values D& with the HSS ~ correlator in terms of the structure functior(7)

exponenty=2.46 for the tagged particle diffusivitieBg deter- = _5’§A§(T):
mined for the liquid curves in Fig. 2. The straight line is the func- )
tion T'(p.— @), ¢=<e., with I' chosen so that the line goes through Kg(t)=—3F(t/ty) / tg, t=C*to. (25

the data point fon=9. The crosses exhibit the square of the local-

ization length,r3, determined for the glass curves in Fig. 2. The It can be shown that the functidhis completely monotone.
full line exhibits the leading asymptotic lang?—hg o/ y1—x,  The proof does not provide further insight and is delegated to
Eqg. (22. Appendix A.
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FIG. 4. Double logarithmic presentation of the MSD for a ' ) ‘
tagged particle of the HSS as a function of the reduced titpefor 0 10 20 30 40
distance parameteks= =10 %, x=1,2,3. The full lines reproduce
the results from Fig. 2 with labels=3,6,9 andt0=t5' from Eq.
(22). The dashed lines are the corresponding results for the colloid FIG. 5. Rescaled velocity correlators- F(t):tg Ks(t)/3
model specified in the tex23] with to=tg from Eq. (21). The =2 52A(t) as a function of the rescaled tiniét, for a tagged
curves forx=2 and 3 are shifted by two and four decades, respecparticle of the HSS at the critical packing fractien= ¢, . The full
tively, to the right to avoid overcrowding. The full dots and squaresjine refers to the model for a Hamiltonian dynamics WiU’th
mark the time scalet, andt,,, respectively, defined in EqQ§Ll70  from Eq.(21) and the dashed one to the colloid model defined in the
and(18b). text with to=t§ from Eq. (21). The full line is a rescaling of the

dotted curves in Fig. 1, where values fe£0.2, i.e.,t/t;<<8.5, are

In Ref. [28], the curves forg,(t) have been compared not reproduced.
with the ones forgy (t/t). The interval for structural relax- ) o _ o
ation was larger for the colloid model than for the modelFig. 2, is reproduced as a full line in the semilogarithmic
with the underlying Hamiltonian dynamics. Thus, the struc-Presentation in Fig. 6. The transient dynamics fer20t,
tural relaxation interval can be identified as the one wheréccounts for about 45% of the total increasede{t) from
the specified curves for the two models collapse. Figure Z€ro to the long-time asymptotg?. The structural relax-
exhibits such a comparison for the MSD. Fef <0.01, the ation needed to approac@2 up to 5%, i.e., 50% of the total
curves agree within the accuracy of the drawing. This holdsincrease, is stretched over a large interval of about four or-
provided t=20t,, i.e., C*~20. The result is nearly valid ders of magnitude time variation. The leading-order formula
also for distance parameters as largéeas-0.1. But there is  for the MSD at the transition point is in analogy to Ef6),

a small offset between the full and the dashed liquid curves 2 a

for x=1. This means that there is a smooth drifttgfwith Ag(t)=rs"—hs(to/D? ¢=¢c, t>1o. (26)
changes ofp, which is different for the hard-sphere colloid
and for the conventional HSS.

In Fig. 5, the rescaled velocity correlattﬁKS(t)/’s for
the critical packing fraction is shown as a full line. This 6 —
diagram is an extension and magnification of the dotted lines &
from Fig. 1 fort=0.2. The dashed line is the analogous
result ¢5)? 92AL\(t) calculated for the colloid model. The 41 7
latter function is (5Dg)2F°l(t), where the completely < A
monotone functiorF°(t) was introduced in Appendix A in < P/
connection with Eqs(A8a) and(A9). According to Eq(25), 2 '
the two curves should collapse on the functi(t/t,). This J 2w
is the case fort>20ty within small error margins. The RS
curves demonstrate stretched relaxation to zero, which can- 2 0 ) 4 6
not be adequately represented on linear scales. It is shown
also that oscillatory motion tends to mask glassy relaxation.
From now on, the discussion will focus on the structural-  FIG. 6. Ag(t) for a tagged particle of the HSS at the transition
relaxation regime=20t,. point o= ¢, (full line), the leading-asymptotic expansion, E26)
(dashed ling and the leading-plus-next-to-leading-asymptotic ex-
pansion Ag(t) =r$%—hg(to/t)®+kg(to/t)?® (dashed-dotted line
The diamond and circle mark the tim&s=18.7=792, andt**

In this section, it shall be examined how well the leading-=1.55=65.%,, where the full line differs by 5% from the dashed
order asymptotic results from Sec. Il C can account quantiand dashed-dotted line, respectively. The horizontal line marks
tatively for the MSD. Let us start withA g(t) for ¢=¢.. the long-time asymptote$?. The dotted line exhibits the ballistic
This result for the critical dynamics, i.e., the dotted line in asymptote} (vgt)>?.

t/t,

The dashed line demonstrates that E26) describes —

log .t

C. Scaling-law descriptions
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structural relaxation regime betweentg@nd t* remains
outside the range of validity of E¢27).

For small rescaled times=t/t,,, Eq.(27) reproduces Eq.
(26) for o—0. The right-hand side of Eq27) becomes
independent ofr and agrees with Eq(26). This explains
why the dashed lines in Fig. 7 for=3 and 4 collapse for
t=<10 and why the corresponding diamonds are located near
t*. Forx=2, the separation parameteris already so large
thatg. (t*/t,) differs remarkably fromt(, /t*)?. Therefore,
A4(t) does not reach the 2 asymptote fort~t*, and the
corresponding diamond shifts away framn Thex=3 curve
follows the critical asymptote from E@26) for a time inter-
val of less than two decades. Such an interval would not be
large enough for a compelling experimental confirmation of
thet 2 law. To identify thet 2 law in its pure form for the
model under studyle| must not exceed 10'.

For large rescaled times the master function for the
glass approaches, (t—=)=1/\1—N\, and Eq.(27) repro-
duces Eq(22). According to the preceding paragraphs, this
explains the solutions for the glass provided the long-time
by e=(¢— ) o= —10-%, x=2.3.4. The dashed lines are the limit r2 is located in the shaded interval of Fig. 7, and this is

first-scaling-law descriptions by E@27). The diamonds mark the demonstrated 'P Fig. 3. “

points where the dashed lines differ from the full ones by 5%. Functiong_(t) for the liquid is zero fot _=0.704. Thus,
Within these intervalsAg(t) varies between about 0.0043 and As(fft(r)z(rg)2 and the interval for the increase Af(t) to

0.0086 as is indicated by the shaded bar. The crosses exhibit thge plateau Va|uer@2 expands proportional to, if ¢ in-

von Schweidler law, Eq(28). The filled circles and squares mark creases toward For larget. one gets von Schweidler's
the timest, andt/ , respectively, defined in Eq§l7¢) and(18b). law e get, 9

o

log t

FIG. 7. The full lines showA 4(t) for packing fractionsp given

within a 5% error margin — about 25% of the total increase

of Ag(t). There remains the large part of the structural- Ag(t)=(rd)*+hs(t/t,)?, o—-0, t,<t<t;. (28
relaxation interval between 2pandt* =792, which is not

adequately accounted for. About half of the structural-Therefore, the long-time end of the range of applicability of
relaxation increase ak(t) is outside the range of applica- Eq. (27) expands proportional to,, as is indicated by the
bility of the leading-order asymptotic formula. Extending Eq. filled squares in Fig. 7. Formulé28) is exhibited by the
(26) by inclusion of the leading correction, one gets a de-crosses. These approach the plategfi for t<t, and the
scription of the MSD up to errors of ordeto(t)**: As(t)  dashed scaling-law lines faet, . Sincet’/t,— for |e|
=(r9)®—hg(to/t)*+ks(to/t)?*. From Ref.[23], one de- .0, the time interval for the von Schweidler—law descrip-
duces ks=0.0143d%. The dashed-dotted line shows how tion expands with decreasing|.

inclusion of the correction term expands the range of the Equation(17a formulates the factorization theorem for

analytic description. _ _ ~ Spa(t)=a(t)—fa: in a leading-order expansion for small
The first scaling law for the MCT-bifurcation dynamics, 54, the deviationdg(t) of the correlator from the plateau
Egs.(17), implies with Eq.(5a), value f§ factorizes in a control-parameter—independent am-

_c2 3 < plitude h, and a functionG(t). The functionG(t) is the

As(t)=rs"—hs Vlolg.(tt,), o0, |o] <1, t>t°2' same for all variable# and describes the time-and-control-
27) parameter dependence @i (t) by a scaling law, Eq(17b).

For the liquid states witho<0, it describes how the This theorem can be tested by identifying the time interval

Ag(t)-versust curve crosses the plateatE)2. For the glass and the range of distance parameterfor which the dia-
states witho>0, it describes the approach towards the arres@rams forga(t) = 6¢a(t)/ha collapse withG(t). Figure 8
atr2=Ag(t—o). The control-parameter—independent func-demonstrates such a test for the dipole correlafy() for

tionsgi(f) for the HSS value of are discussed in Fig. 10 three values of the elongation paramefeiThe markers for

* , i .
of Ref. [22]. The dashed lines in Fig. 7 exhibit E@7) for ~ 200 t 't,htUF,' a”‘i‘v ggv_e bele” t"’r‘]dded to f"".c"'lfatet";]‘ compare
three liquid states. They agree with the MCT solutions>o" WIth 'E' ) \%CI)US Y ;. scenacrjlo bor fgr plateau
within a 5% error margin within the intervals marked by ¢'9SSINd is the same i@, () as discussed above flr(t).
diamonds. Within these intervals(t) increases from about To corerborate this conclusion, the rescaled result for the
0.0043d? to about 0.00862. Formulas such as Eq¢l6)  MSD, As(t)=[f%2_ﬁs(t)]/hs for e=—0.001, has been
and(26) are the basis for the derivation of the MCT-scaling added to the figure. The=2 results show that for negative
laws. Therefore, it follows from Fig. 6 that the part of the C,(t), the full lines follow the sequencg= 0.6, 0.8, and 1.0
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Py
T T T - T I.I T T

A (=10

log 1OA (t)

FIG. 8. The full lines are dipole correlatof3,(t) rescaled to
f:l(t)=[Cl(t)—f‘i]/h1 for the elongation parameters=0.6, 0.8,
and 1.0(from top to bottom, where f$=0.769,0.905,0.955 and
h;=0.46,0.19,0.09, respectively. The distance parameters are
e=—10"%, x=2,3,4 (compare text The filled circles and squares
mark the timed,, andt, , respectively, for the three packing frac-
tions. The dashed lines exhibit the first-scaling-law asymptotes
\/mg,(t/t(,). The dotted line is the MSD for a tagged patrticle for

x=3 rescaled ta\ g(t) =[r?— Ag(t)]/hs.

from top to bottom, where the latter two curves are very
close to each other. The same behavior is observed for posi-

tive C,(t). This observation exemplifies a general implica- log, t
tion of the leading corrections to the factorization theorem 10
[22]. FIG. 9. Ag(t) andA(t) for =0.8, andA z(t) for ¢ = 0.4, 0.6,

A possibility for the definition of a characteristic time 0.8, 1.0 (full lines, from bottom to top Successive curves are
scaler, for the a process of variabld is given by the time  shifted upwards by two decades to avoid overcrowding. The dis-
needed to complete 95% of the total decay from the plateatance parameter is= — 103 and the corresponding timéesandt/,
fg to the equilibrium value zero, i.e.pa(7n)= fZ/ZO- are marked by filled circles and squares, respectively. The dashed
Within the range of validity of the second scaling law, Eq.lines are the first-scaling-law asymptotes, &27). The open dia-

(19), the A-dependent scales are coupled in the sense th&ponds mark the points where the dashed lines differ from the full
o ~ . . ones by 5%. The straight dashed-dotted lines exhibit the diffusion
Ta=7at, . Here 7, is an A-specific control-parameter—

- ~ asymptoteDt, Dt, andDst, and the filled diamonds mark the
independent factor determined a(7) =f4/20. Applying  position where these differ from the full lines by 5%. The dotted
these results to the dipole correlator, one g€ig(t) lines, which coincide with the full ones far=10%, exhibit the
=C,(1) for |o|<1 andt,<t, wheret=t/t,. For the second-scaling-law asymptotes, E29).
a-scale factors, one finds,=18.8 (8.73,2.66 for {=1.0 ) ) )
(0.8,0.6. The description of thex process for elongation Proaches this power-law asymptote fprincreasing top. .
parameter, = 0.8 is demonstrated in Fig. 8 of R¢B5]. The asymptotic description af(t) by Eq. (29) is demon-
Using the second scaling law for the tagged-particle-Strated in Fig. 9 of Refl.23]. _ _ _
density correlator, one gets from E&a) the second scaling For times of ordet,, the relative corrections to the first
law for the « process of the MSD, scaling law are of ordek/[o|. For times of ordett’ , the
corrections to the second scaling law are of of@er There-
fore, the second scaling law holds for larger separatiofis
Agt)=AgT), T=tit., |o| <1, t,<t. (29)  than the first on¢22]. For example, even for the large value
e=—0.1, Dé’y differs from the linear asymptote by only
15%, as is demonstrated by the=3 result in Fig. 3. The
An «a-relaxation timerg shall be defined by that time, where corrections to Eq(29) increase ift decreases towards .
the diffusion asymptoteDgt is reached within 5%, i.e., But fort~t,, the description in terms of the first scaling law
Ag(79)=1.05Dg7s. One getsDg=Dg/t., and rg=T7st’,, becomes valld,_whlch prowdes the leading corrections to Eq.
~ ~ . (29). The descriptions in terms of the two scaling laws over-
where Ds and 75 are to be determined from lap. Together, they provide a complete description of the
limi_.Ag(t)/t=Ds and Ag(7g)/7s=1.0Ds. One finds  dynamics fort=t*. This holds providede| is small enough,
Ds=0.0171 andrs=11.6. One gets in particulddgx1/t!  as is demonstrated in Fig. 9 far=—10 3 for Ag(t) and
«(p.—¢)?, and Fig. 3 demonstrates how the diffusivity ap- A(t) for {= 0.8, and forA 4(t) for four values of¢. From
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the analogous figure constructed fe=—10"2, one con-
cludes that the scaling-law description accounts for the MSD
quantitatively fort=t* and|e| <0.01. For larger distance
parameters, corrections to scaling become visible.

D. Rotation-translation-coupling effects

It might be adequate to start the discussion of rotation-
translation-coupling effects with two side remarks. First, it
was shown that the correlators for the dipole and the quad-
rupole dynamics for=0.8 are in semiquantitative agree-
ment with the experimental data for propylene carbonate
[35]. Thus, the results to be discussed ¢ 0.6 can be
considered relevant for the interpretation of glass-forming . .
van-der-Waals liquids. Second, the system under study ex- 0 10 20
hibits two glass phases fat=¢.. There is a critical elon- T
gation . so that for{>¢., correlations of the molecule’s
axis arrest for long times as do all other correlations of vari- FIG. 10. a-relaxation master functiond as a function of the
ables characterizing the structure. In particul@g(t— o) rescaled timé =t/t/, for {=1.0, 0.8, and 0.¢from top to bottor.
=f,>0. But for {</{., dipole correlations exhibit ergodic The curves foz=0.8 (1.0) are shifted upward by 0(@.8) in order
behavior, i.e.C;(t—=)=0. Precursor effects of this glass- to avoid overcrowding. Curves with labed and A refer to the
glass transition af disturb the standard transition scenario MSD for the molecule’s center and for the constituent atom, respec-
[25,35. This is the reason whi ,(t) for {=0.4 is remark- tively. The filled diamonds mark the time., where the diffusion
ably different fromA o(t) for the otherf shown in Fig. 9; for  asymptote is reached within 5%:(7c) =1.0Dc7c. The corre-
{=0.4, the elongation is too close ©=0.380. For ex-  sponding timer, for the constituent atom fof=1.0(0.8,0.6) is
ample, for{=0.4, the corrections to von Schweidler’s law, 7a=140(72,39). The triangles mark the timg, where the dipole
which shift the dashed lines onto the full ones tgt
<t/ , are negative, while they are positive for the other
cases. and the centerA z(t) — Ac(t)=X for t=t/t/ =7, as is dem-

The glass transition of the HSS is driven by density fluc-onstrated in the linear representation of th@rocess master
tuations with wave numbers near the first-peak position ofunctions in Fig. 10. The slow decay of the relative offset
the structure facto®, close toq="7.0/d. For the scale factor X/Dt explains that the ratiars/7¢ is larger than unity,
for the a process of these fluctuations, defined }?jy@-q) increasi_ng il’l. conj_unction Wit@.’. Second, steric hindrance
=f3/20, one getsr; ,=6.0. For thea relaxation of the for reorientations increases with For />0.8, thea scale

tagged-particle-density correlations for the same wave vecThl for dip_l(_)r']e reflaxati(r)]ns becomes comparal;lteat(,) or larger
tor, one gets a similar numbef ;=5.0. One concludes that than 7c . Therefore, there appears an interval dt, < 7,

~ , : after the end of the von Schweidler—law regime and before
the a-scale factorrs= 7s/t,=11.6 for the approach dfs(t)  he peginning of the diffusion regime, where the
to the diffusion limit is in the range within which relevant Ap(t)-versust diagram, in contrast to the c(t)-versust

density fluctuations decay to zero. The corresponding intergne “exnibits a curvature. This is shown for 0.8 and 1.0 in
val for the crossover from the end of the von Schweidlergi, 10,
decay to the beginning of diffusion is 2.2 decades. This is |t 3 hard sphere gets expanded to a dumbbell with a small

shown by the lowest curve in Fig. 9 and should be considg|gngation, the molecule’s center gets restricted more tightly
ered as the normal behavior for the density-fluctuation dyj, jts cage. Therefore, provided is small, the localization

namics in simple systems. The MSD for the molecule’s cenygn g, ¢ js smaller tharr and it decreases with increasing

fce(rj. l)tghayeﬁ glwtfe ﬁ;&mllsrlyﬁc(t) fongzg.g 1S netarli/ {. For{~1.0, the localization of one constituent atom of the
indistinguishable from\(t). However, Fig. 9 demonstrates o 16 restricts the motion of its partner. Therefafejs

also thath 4(t) behaves differently. Fof = 1.0(0.8,0.6, the smaller thamr ¢ also for large elongations. Counterintuitivel

above-specified crossover intervals are @3,2.8 decades the th dS Cl g ; 9 ¢ A ¢ lati {)

wide. This means that the crossover intervalsAqft) are € theory does not fead 1o azmono onic interpofation: be-
tween the specified limits. Thet“-versus¢ diagram in Fig.

larger than those oAg(t) or A(t) by factors of about 13 o o c 0
(7,4, and so are the scalesr, compared torg of 7¢. The 11 exhibits an oscillation andf, exceeds g by about 10%

reason is the reorientational contribution to the MSD of thefor ¢ near 0.6.

constituent atom, i.e., the second term on the right-hand side FO" {=<Zc, one 2getsC1(t—>oo)=O. If one neglectsctzhe
of Eq. (2). There are two effects. First, fart.>7;, the varlaztlon of therc®-versus¢ curve, Eq.(2) leads tory
dipole correlations are decayed to zero, i.e., the molecule’sFs”+(¢£d)?/12. The dotted line in Fig. 11 shows that this
axis is distributed on the unit sphere with a constant probformula explains the increase I for ¢ increasing up td.
ability density. Therefore, there is the positive offsét  For ¢ increasing abové., the decrease of-1f, and ofr¢
=(¢d)?/12 between the two functions referring to the atomexplains the decrease of .

correlator has completed 95% of itsdecay:C,(7,)/f,=0.05.
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x10° the particular function under discussion Differentiation with

3.0 . : : — 0.02 respect to time, as is considered in E4) for the velocity

correlatorKg(t), enhances oscillation features, i.e., devia-
tions from relaxation behavior. Figure 5 demonstrates indeed
that one would estimate the structural relaxation interval for
Kg(t) ast>40t,, i.e., somewhat more restrictive than for the
1001 MSD.

For a normal liquid, the velocity correlator is positive for
short times. It is also positive for times exceeding a cross-
over timety, , where it exhibits a hydrodynamic long-time tail
proportional tot~%2 [1]. But, upon approaching the glass-
transition point, the regime for hydrodynamics shrinks to
lower frequencies. Therefore, the tintg diverges if the
packing fractiong approaches the critical valug.. The
cage effect causeld(t) to be negative fot>20t,. Even
more, the correlation of the particle velocity at timwith a

value opposite that of its initial value, sa?(t)=<55(t)-

FIG. 11. Squares and triangles are the localization Iength@—JS(t=0)]>, is proportional to a completely monotone
squared at the transition poirt=¢. as a function of the mol- function F(t/ty), Eq. (25). The function¥ represents a re-
ecule’s elongatiori for the constituent atomrf\z) and the center |axation process in the sense of EB3b), where the weight
(r&?), respectively. The circles are the diffusivia=Dc of the  function p(y) is given by the structural function. These re-
molecule calculated foe=—0.01. The lines connecting the sym- gyits for the velocity correlator far>20t, express concisely
bols are guides to the eye. The horizontal dashed line is a commope essence of glassy dynamics, namely the relaxation caused
one indicating both the values of the square of the Iocalizatiorby the cage effect and determined by the Boltzmann factors
Iengthrg2 (on the right scaleand of the diffusivityD g (on the left for the equilibrium structure.
scale for a tagged particle of the HSS. The dotted line is the func- The MSD increases with time according to the character-
tion rgz+(.gd)2/12 discussed in the text. The inset 'exhit.)its.ﬂi istic two-step pattern of the MCT-transition scenario. There
as a function of¢, wheref;=C;(t—x) is the long-time limit of . tretched ht d lat vagﬁef I d
the dipole correlato€,(t). The arrow indicates the critical elonga- IS a stretched approach towards a p a- ea%‘ 0 OW(:Z
tion £,=0.380 for a glass-glass transition. by arrest at the square of the localization Ieng@a:rS

within the glass or by the stretched start of theprocess

It seems plausible that the number of paths for the molWithin the liquid, Fig. 2. The sensitive density dependence of
ecule through the system’s configuration space decreaséde MSD near the plateau is described by the universal for-
with increasing elongation. Therefore, one might expect thafnulas for the first scaling law, as is demonstrated in Fig. 7.
the diffusivity Do=D¢ is smaller thanDg and decreases The same holds for the dipole correlatGn(t). This is
with increasingZ. Figure 11 confirms this expectation for shown in Fig. 8 by scalingC,(t) for three values of the
small and for large elongations. But, strangely, the calculategnolecule’s elongation on the same functiofle]| g_(/t,).
diffusivity is not a monotone function af, and for{~0.6, However, there is a large time interval at the beginning of

25t

2.0

1.5
1 0.0

D exceedDg by about 30%. the structural-relaxation regime, 8t<t* ~80Q,, where
the universal leading-order-asymptotic formulas do not de-
IV. CONCLUSIONS scribe the MSD, as is shown in Figs. 6 and 7. The theory

predicts similar results for all systems with a structure simi-

MCT predicts that the long-time parts of the density-lar to that of the HSS, i.e., for all van-der-Waals liquids.
correlation functionsp,(t) of the solvent andzsé(t) of the  Obviously, it would be worthwhile to test by experiment or
solute deal with relaxation in the sense that they are supemolecular-dynamics simulation whether the specified predic-
positions of Debye-relaxation processes[ex@(t/ty)]. They tion is correct, and in particular whether MCT can reproduce
deal with structural dynamics in the sense that the weighproperly the structural relaxation of the MSD outside the
functions py(y) and pg(y) for these superpositions are scaling-law regime.
uniquely determined by the equilibrium structure. The corre- The beginning of thex process of the MSD, i.e., the
sponding dynamics is therefore referred to as structural rencrease ofA,(t) above the platealﬁz, is described by von
laxation. Within the structural-relaxation regime, the subtle-Schweidler's law, Eq.(28). It is exhibited in Fig. 9 for
ties of the normal-liquid dynamics merely enter via the valuet>t,, by the dashed lines. The process terminates in the
for an overall time scal&,, which is defined with the aid of diffusion law for long times, exhibited in Fig. 9 by the
the critical decay law, Eq.16). The structural-relaxation in- straight dashed-dotted lines. Theprocess follows well the
terval was estimated for the hard-sphere systd®S under  second scaling law, Eq29), which is presented by the dot-
study ag>20t, (Sec. lll B, Fig. 4. The specified properties ted lines. The crossover interval from the end of the von
of the MCT dynamics are asymptotic ones, valid for largeSchweidler—law descriptior(indicated by the open dia-
times near the transition point. The estimation of the range ofmonds to the beginning of the diffusion proce§sdicated
validity depends on the accuracy level required and also oby the filled diamondsfor the MSD of an atom is about two
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decades wide, as shown by the lowest curve in Fig. 9. The 6
same is true for the MSD of the molecule’s center. But the ,‘.
crossover interval for the MSD of the constituent atom of the .' £=0.60
molecule is much larger due to the rotation-translation cou- P '
pling. The expansion is more than an order of magnitude for v::-;
{=1.0. It would be valuable for an assessment of the MCT 2 1
for molecular systems if this prediction could be tested by
molecular-dynamics simulation.

Bennemannet al. [36] have determined by molecular- 0
dynamics simulation the MSD for the monomer and for the
center of a polymer for a model of a glassy polymer melt.

They identified for their data the process in the sense of 3

MCT and interpreted it consistently with the universal 5 |

asymptotic formulas. They observed the expansion of the

crossover interval for the monomer MSD relative to that for ~1

the center, similar to what is shown in Fig. 9 fo= 1.0, and 2

they attribute this expansion to the glassy dynamics of the 207

Rouse modes. These modes for the polymer’s internal de- a1 b

grees of freedom are thus identified as part of éhprocess

[36]. Figures 9 and 10 corroborate their conclusions, albeit -2

for the simplest polymer model only, namely a rigid hard- 0 5 10 15 20
sphere dimer. q

Let us consider a one-dimensional model, where two hard FIG. 12. Pair distributiorgS(r) as a function of the distanae

spheres are restricteq to. move in a finite interval. One calcUsenyveen solvent particles and the center of the sdlytper panel
lates easily the localization lengtfy of one of the spheres, 4nq the corresponding solute-solvent structure fasbéq) (lower
assuming the other sphere moves freely between the wall anghnej calculated within the Percus-Yevick theory for the critical
its partner. Similarly, one can calculate the localizationpacking fractione.=0.516. The dotted lines refer to a tagged
length rc of the center of a dumbbell built by the two sphere of the same diametels=d, as the one of the solvent par-
spheres. One findsc>rg, i.e., the freely moving partner ticles. The dashed lines refer to a spherical solute of dianukter
provides a stronger hindrance for the motion in the cage thar1.215d (see the tejt The full lines exhibit the isotropic part of
the bonded one. Possibly, the resit>r§ shown in Fig. 11 the distributiong3(r) and the structure factg(q) for a dumbbell
for 7=0.6 is the analog of this phenomenon for one-consisting of two fused hard spheres of diametevith the elon-
dimensional localization. To corroborate this reasoning, Figgation{=0.6{29].

12 exhibits as full lines the isotropic pag@(r) of the solute-
solvent pair distribution function and the corresponding A i c .
structure factors(?(q) for =g, for a dumbbell with only larger tharr g, but it is even larger thang. The esti-

C S
{=0.6[29]. The dashed lines exhibit the results for a spheréfatedro is rather close to :[he true Iocahza_tlon length
with diameter do=1.215d chosen such that its volume —0-0808d for the dumbbell's center. Only it becomes

agrees with that of the dumbbell. The well-known excluded-£ven larger do mode couplings to the nonisotropic parts of

volume effects for this effective spherical solute are IargetIhe dgnsity fluctuations take over and compensate for the
than those for the tagged particle of the HSS. In particularfjepleuon . effect;s. Th's leads to .the
ecrease of ¢ with increasing{ for {>0.6, as shown in

the structure factor peak is higher. Therefore, the localizatiod!

length rg=0.0588d for the effective spherical solute is Fig. 11. _ _
much shorter than the localization lengtg=0.0746d for The above-discussed depletion effect means that the
the tagged particle of the HSS. The ratig/r& decreases dumbbell is surrounded by a liquid of lower averaged density

with increasingZ. The pair distribution function of the effec- than specified by the packing fraction. Hence, the dumbbell

) . moves in a complex, which effectively has a larger distance
tive sphere agrees reasonably well wﬁ‘(r) for the dumb- P y d

from the glass-transition point than is specified by, (
bell for r>1.5d. Therefore, the two structure factors are — ¢)/ .. Such a lubrication phenomenon for the dumbbell

close to each other on the wings of t8§() peaks and also iy the complex might explain the increase of the diffusivity
for smallg. However, packing cannot be done as efficiently oyhipited in Fig. 11 foz~0.6. Diffusion in a dense liquid is
around the dumbbell as around a sphere of the same volumg. -|jective phenomenon. A particle can move over a dis-
Therefore, the pair distribution function for the latter is much e comparable to its diameter only if one of its neighbors
bigger for r near dey than g5(r) for the dumbbell. This  moyes. This neighbor can move only if its neighbor moves,
depletion effect leads to a reduction [&(q)| at the peak and so on. On the average, a flow pattern will be built similar
position and also for larger wave numbers. Hence, the depleo the motion of a sphere in an incompressible ideal liquid. It
tion reduces the magnitude of the mode-coupling coeffiwas one of the original motivations for the formulation of the
cients. As a result, the localization length=0.0863d, cal- ~ MCT equation of motion to treat approximately the indicated
culated by using MCT equations for a simple system withbackflow phenomenon. Molecular-dynamics simulation has

only the isotropic part of the dumbbell structure factor, is not
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shown that a typical event underlying the mentioned averventional first approximation step of a theory for colloid dy-
aged backflow pattern might consist of quasi-one-namics to coarse-grain correlation functions on time scales of
dimensional motions of clusters of particlg87]. It seems  the order of 1MYs) and 1qu'reg(s). For the correlators
possible that the bonding of two atoms to a molecule stabiconsidered here, this means tlsat M[]eg(s) in Eq. (A1), s
lizes the cluster, provided the elongati¢d is smaller than +M§,reg(s) in Eq. (A2), ands+M3™Ys) in Eq. (A4) are

the diameter of the ring formed by the moving cluster. If thisreplaced by v,=M"Y(s=0), »S=MS5"Ys=0), and »$
were the case, the diffusivity for the molecule should be_ 4. e g ’ 0
larger than that for a tagged atom. Hence, it is not 0bviou§/
that the nonmonotone variation of the diffusivity with
changes of, which is shown in Fig. 11, is a mere artifact of

M5 ®(s=0)=lim_ov5, respectively. Let us indicate the
arious functions, obtained by this specialization of MCT, by
superscripts “col.” The equations of motion, obtained by the
backtransformation of the so-modified E¢é1) and (A2),

the approximations underlying the presented theory. are[22,23
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7395 (D) + b3 1)

t
+f dt’ mg(t—t') g g (') =0. (A6)
APPENDIX: MODE-COUPLING-THEORY MODELS FOR 0

COLLOIDS Hererq= /07 and =g/ (qus)? are times characterizing

In this appendix, it will be shown how the MCT formulas conventional colloid dynamics. The interaction potentials be-
for simple systems can be specialized to models for the dytween the particles, which cause the cage effect, are not al-
namics of colloids. Within this frame, a representation of thetéred by the introduction of the solvent. Therefore, the ex-
velocity correlator in terms of a completely monotone func-Pressions for the mode-coupling contributions to the kernels,
tion F<°(t) will be derived. To begin, let us remember the Eds.(7) and(9), keep their functional form,
definition of Laplace transforms of functions of time, say ., .. col S.coly e s.col col
F(t), to functions of the complex frequencg F(s) Mg (0 =Fl ¢ (D], mg (t)_]:g[d’k (1. p (t)%‘?
= [odtexp(—st) F(t). Applying this transformation te(t), (A7)
MgH(t), andmy(t), one can rewrite Eq(6) together with the  Equations (A5)—(A7), together with the initial conditions
initial conditions $4(t=0)=1 and di$,(t=0)=0 as a 4>t=0)=1 ande3*(t=0)=1, define a unique solution
double fraction forg(s): with all the general properties of correlation functid8].

Since the coarse graining has altered shex asymptote of
— 2 re 2
bo(s)=1/{s+ Qq/[S+ng(S)+Qq me(s)]}- (A1) the correlator transforms relative to that exhibited by Egs.

The analogous result can be obtained for the tagged—partic@l) and (A2), the short-time behavior is altered, namely

correlator, Ft—=0)=1=|tl/7q+ - -, ¢35 t—0)=1—|t|/rg+---.
Since s was dropped in the denominator of E@4), the

B3(s)=11{s+(qus)?/ [s+Mg"™Ys) + (qus)? my(s) ]} velocity-correlator Laplace transform for the cocll?id dynam-
(A2) ics does not tend to zero for large rather Kg'(s— )

=3Dj, with the abbreviatio5=v3/v3. This suggests re-

Equation (4) can be rewritten as a relation between thewriting the coarse-grained velocity correlator as

Laplace transformalg(s) and Kg(s) of Ag(t) and Kg(t),

respectively: KL!(s)/3=D5—-D5?F*(s), (A8a)
— 2
KS(S) =3s AS( S) . (A3) FCOl( S) — m%0|( S) / [1+ Dg m(éol(s)]’ (A8b)
The smallg expansion of Eq(A2) leads to
e ) me’(t) =7 g (1), pp’(1)]. (A80)
Ks(s)=30v3/[s+M5"™qs)+vimg(s)].  (A4)
The solutions of Eqs(A5)—(A7) are completely mono-
Here Mg*reg(s)zlimqﬂo qu"eg(s), and mg(s)  tone[32]. KernelmP(t) is a combination with positive co-
=limg_o qzmqs(s) is the transform ofng(t) from Eq.(14a  efficients of products of completely monotone functions be-
[12]. cause of Eqs(A8c) and(14), and therefore it is completely

In a colloid, there is a contribution to the fluctuating force monotone as well33]. Because of Bernstein’s theorem, one
due to the interaction of the particles with the suspendingan Writemgo'(s):ff)“[SnL v1~ p(y)dy with a non-negative
liquid. This leads to contributions to the rat%{fg(s) and  distribution p(y). Therefore, the following four properties

Mqufeg(s), which are large compared to the scale for thehold[33] for ml(s): (i) it is holomorphic for all compless,

frequencys one wants to consider. Therefore, it is the con-except for negative real numbersi) m§°'(s)* =m§°'(s*);
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(i) mPY(s)—0 for Res—c; and (iv) Imm%LY(s)<0 for

Ims>0. One concludes furthermore that-D3Sm!(s)#0

for all s except, possibly, negative real values. From Eg.
(A8b) one concludes that al$e™!(s) exhibits the properties
(i)—(iv). Hence,F®(s) is the Laplace transform of a com-
pletely monotone functiof°(t) (Ref.[33], Chap. 5, theo-

rem 2.9. The backtransformation of E§A8a) leads to the
desired representation

K&l(1)/3=D3 8(t) - D§? Fht), (A9)
whereF<(t) obeys Eqgs(23).

Let us add that the backtransformation of E48b) leads
to an equation of motion determinif&f®(t) from the kernel
mZl(t):

PHYSICAL REVIEW E 64 011503

t
F°°'(t)=mg°'(t)—D§j dt’ mi(t—t') Fe(t).
0
(A10)
Integrating Eq(A9) twice with respect to the time and using

Eqg. (A10), one gets an equation of motion for the MSD of
the colloid,

t
AL(t)=Dg|t- fodt’ me(t—t") ALt . (A1D)

This result was derived originally along a different route
[23]. It implies lim,_,AL(t)/t=D5.
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